Skip to main content
Log in

A low power balun LNA with active loads for gain and noise figure optimization

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we describe a balun LNA with noise and distortion cancelling with active loads to boost the gain and reduce the noise figure (NF). Simulation and measurements results, with a 130 nm CMOS technology, show that the gain is enhanced by about 3 dB and the NF is reduced by at least 0.5 dB, with a negligible impact on the circuit linearity (IIP3 is about 0 dBm). The total power dissipation is only 4.8 mW, and the active area is less than 50 × 50 µm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Amer, A., Hegazi, E., & Ragai, H. (2007). A low power wideband CMOS LNA for WiMax. IEEE Transactions on Circuits Systems II, 54(1), 4–8.

    Article  Google Scholar 

  2. Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M. E., Lee, M., Mikhemar, M., et al. (2006). An 800-MHz–6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 41(12), 2860–2876.

    Article  Google Scholar 

  3. Bastos, I., Oliveira, L. B., Goes, J., & Silva, M. (2010). MOSFET-only wideband LNA with noise cancelling and gain optimization. In IEEE Mixed Design of Integrated Circuits and Systems (MIXDES) (pp. 306–311, 24–26).

  4. Bastos, I., Oliveira, L. B., Oliveira, J., Goes, J. & Silva, M. (2012). Balun LNA with continuosly controlable gain and with noise and distortion cancellation. In IEEE International Symposium on Circuits and Systems (ISCAS’12) (pp. 2143–2146). Seoul.

  5. Bastos, I., Oliveira, L. B., Oliveira, J., Goes, J. & Silva, M. M. (2013). Double feedforward 0.6 V LNA with high gain and low noise figure. In 20th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES’13).

  6. Blaakmeer, S., Klumperink, E., Leenaerts, D., & Nauta, B. (2008). Wideband balun-LNA with simultaneous outputs balancing, noise-canceling and distortion-canceling. IEEE Journal of Solid-State Circuits, 43(6), 1341–1350.

    Article  Google Scholar 

  7. Bruccoleri, F., Klumperink, E., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits, 39(2), 275–282.

    Article  Google Scholar 

  8. Chew, K. W., Yeo, K. S., & Chu, S. F. (2004). Effect of technology scaling on the 1/f noise of deep submicron MOS transistors. Solid-State Electronics, 48, 1101–1109.

    Article  Google Scholar 

  9. Crols, J., & Steyaert, M. (1997). CMOS wireless transceiver design. Norwell: Kluwer.

    MATH  Google Scholar 

  10. Han, K., Zou, L., Liao, Y., Min, H., & Tang, Z. (2008). A wideband CMOS variable gain low noise amplifier based on single-to-differential stage for TV tuner applications. In IEEE Solid-State Circuits Conference, A-SSCC ‘08, (pp. 457–460), 3–5 Nov 2008.

  11. Im, D., Nam, I., & Lee, K. (2010). A CMOS active feedback balun-LNA with high IIP2 for wideband digital TV receivers. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3566–3579.

    Google Scholar 

  12. Iniewski, K. (2008). VLSI circuits for biomedical applications. London: Artech House.

    Google Scholar 

  13. Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  14. Mak, P.-I., & Martins, R. (2009). Design of an ESD-protected ultra-wideband LNA in nanoscale CMOS for full-band mobile TV tuners. IEEE Transactions on Circuits Systems I, 56, 933–942.

    Article  MathSciNet  Google Scholar 

  15. Manghisoni, M., Ratti, L., Re, V., Speziali, V., & Traversi, G. (2006). Noise characterization of 130 and 90 nm CMOS technologies for analog front-end electronics. IEEE Nuclear Science Symposium Conference, 1, 214–218.

    Google Scholar 

  16. Razavi, B. (1998). RF Microelectronics. Bergen County: Prentice-Hall.

    Google Scholar 

  17. Xiao, J., Mehr, I., & Silva-Martinez, J. (2007). A high dynamic range CMOS variable gain amplifier for mobile DTV tuner. IEEE Journal of Solid-State Circuits, 42(2), 292–301.

    Article  Google Scholar 

  18. Zhan, J.-H. C. & Taylor, S. S. (2006). A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard applications. In IEEE ISSCC 2006 Digest of Technical Papers (pp. 200–201).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, I., Oliveira, L.B., Goes, J. et al. A low power balun LNA with active loads for gain and noise figure optimization. Analog Integr Circ Sig Process 81, 693–702 (2014). https://doi.org/10.1007/s10470-014-0426-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0426-6

Keywords

Navigation