Skip to main content

A chopper current feedback instrument amplifier with bandpass amplification stage

Abstract

A novel chopper indirect current feedback instrument amplifier (IA) is presented in this paper. Normally, low frequency signal is choppered to high frequency and then fed into an IA’s first amplification stage with low pass frequency response. While the signal is amplified, the offset and 1/f noise of the first stage are also enlarged. This leads to large ripple at IA’s final output. A bandpass amplifier taking use of active inductor is designed as the first stage of the chopper amplifier. It amplifies the high frequency signal and suppresses the offset and the low frequency noise at the same time. The ripple at the IA’s output is reduced. The IA comprises of a bandpass input stage and a folded cascode output stage. The second modulator is placed at the drains of the input transistors of the cascode amplifier. The offsets of those transistors which are between the bandpass amplifier and the second modulator are reduced by a ripple reduction loop. A verification circuit is designed in 0.18 μm CMOS technology. The measurement results show that the IA has a gain of 40 dB and its bandwidth is 7.1 kHz. The input referred noise is 74 nV/vHz and the input referred residual offset is 3 μV. Its common mode rejection ratio is over 130 dB. The core circuit occupies 0.16 mm2 chip area and consumes 30 μA from a 2.6 V power supply.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Menolfi, C., & Huang, Q. (1997). A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE Journal of Solid-State Circuits, 32(7), 968–976.

    Article  Google Scholar 

  2. 2.

    Makinwa, K. A. A., & Huijsing, J. H. (2001). A wind sensor with an integrated low-offset instrumentation amplifier. In Proceedings of 8th IEEE International Conference on Electronics, Circuits and Systems (ICECS) (Vols. 1–3, pp. 1505–1508). St Julians: Malta.

  3. 3.

    Witte, J. F., Huijsing, J. H., & Makinwa, K. A. A. (2008). A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing. IEEE Journal of Solid-State Circuits, 43(12), 2769–2775.

    Article  Google Scholar 

  4. 4.

    Fan, Q., Sebastiano, F., Huijsing, J. H., & Makinwa, K. A. A. (2011). A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE Journal Solid-State Circuits, 46(7), 1534–1543.

    Article  Google Scholar 

  5. 5.

    Chan, P. K., Ng, K. A., & Zhang, X. L. (2004). A CMOS chopper-stabilized differential difference amplifier for biomedical integrated circuits, In: MWSCAS (pp. III-33–III-36).

  6. 6.

    Denison, T., Consoer, K. Santa, W. Molnar, G., & Miesel, K. (2007) A 2 μW, 95 nV/√Hz, chopper-stabilized instrumentation amplifier for chronic measurement of bio-potentials, In: IMTC (pp. 1–6).

  7. 7.

    Fan, Q., Sebastiano, F., Huijsing, H., & Makinwa, K. (2010). A 2.1 μW area-efficient capacitively-coupled chopper instrumentation amplifier for ECG applications in 65 nm CMOS, In: ASSCC (pp. 1–4).

  8. 8.

    Sansen, Willy M. C. (2006). Analog design essentials, The Springer International Series in Engineering and Computer Science (1st ed.). New York: Springer.

  9. 9.

    Enz, C. C., & Temes, G. C. (1996). Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization. Proceedings of the IEEE, 84(11), 1584–1614.

    Article  Google Scholar 

  10. 10.

    Kitchin, C., & Counts, L. (2006). A designer’s guide to instrument amplifiers (3rd Edition), Analog Devices, Inc.

  11. 11.

    van den Dool, B. J., & Huijsing, J. H. (1993). Indirect current feedback instrumentation amplifier with a common-mode input range that includes the negative rail. IEEE Journal of Solid-State Circuits, 28(7), 743–749.

    Article  Google Scholar 

  12. 12.

    Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current-mode approach, Eds. London: Peter Peregrinus Ltd.

  13. 13.

    Witte, J. F., Makinwa, K. A., & Huijsing, J. H. (2007). A CMOS chopper offset-stabilized opamp. IEEE Journal of Solid-State Circuits, 42(7), 1529–1535.

    Article  Google Scholar 

  14. 14.

    Burt, R., & Zhang, J. (2006). A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path. IEEE Journal of Solid-State Circuits, 41(12), 2729–2736.

    Article  Google Scholar 

  15. 15.

    Kusuda, Y. (2010). Auto correction feedback for ripple suppression in a chopper amplifier. IEEE Journal of Solid-State Circuits, 45(8), 1436–1445.

    Article  Google Scholar 

  16. 16.

    Kusuda, Y. (2011). A 5.9 nV/√Hz chopper operational amplifier with 0.78 μV maximum offset and 28.3 nV/°C offset drift, In: ISSCC (pp. 242–243).

  17. 17.

    Wu, R., Makinwa, K. A. A., & Huijsing, J. H. (2009). A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE Journal of Solid-State Circuits, 44(12), 3232–3243.

    Article  Google Scholar 

  18. 18.

    Fan, Q., Huijsing, J. H., & Makinwa, K. A. A. (2012). A 21 nV/√Hz chopper-stabilized multi-path current-feedback instrumentation amplifier with 2 μV offset. IEEE Journal of Solid-State Circuits, 47(2), 464–475.

    Article  Google Scholar 

  19. 19.

    Makinwa, K. (2007) Dynamic-offset cancellation techniques in CMOS, In: ISSCC Tutorial.

  20. 20.

    Masui, Y., Yoshida, T., & Iwata, A. (2008). Low power and low voltage chopper amplifier without LPF. IEICE Electronics, Express, 5(22), 967–972.

    Article  Google Scholar 

  21. 21.

    Sanduleanu, M. A. T., Van Tuijl, A. J. M., Wassenaar, R. F., Lammers, M. C., & Wallinga, H. (1998). A low noise, low residual offset, chopped amplifier for mixed level applications. IEEE International Conference on Electronics, Circuits and Systems, 2, 333–336.

    Google Scholar 

  22. 22.

    Menolfi, C., & Huang, Q. (1999). A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE Journal of Solid-State Circuits, 34(3), 415–420.

    Article  Google Scholar 

  23. 23.

    Bakker, A., Thiele, K., & Huijsing, J. H. (2000). A CMOS nested-chopper instrumentation amplifier with 100-nV offset. IEEE Journal of Solid-State Circuits, 35(12), 1877–1883.

    Article  Google Scholar 

  24. 24.

    INA333 datasheet: http://www.ti.com/product/ina333&DCMP=hpa_amp_ina333&HQS.

  25. 25.

    Steyaert, M. S. J., Sansen, W. M. C., & Chang, Z. Y. (1987). A micropower low-noise monolithic instrumentation amplifier for medical purposes, IEEE Journal of Solid-State Circuits, sc-22(6), 1163–1168.

  26. 26.

    Pertijs, M. A. P., & Kindt, W. J. (2010). A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE Journal of Solid-State Circuits, 45(10), 2044–2056.

    Article  Google Scholar 

  27. 27.

    Wu, R., Huijsing, J. H., & Makinwa, K. A. A. (2011). A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. IEEE Journal of Solid-State Circuits, 46(12), 2794–2806.

    Article  Google Scholar 

  28. 28.

    Wu, R., Chae, Y., Huijsing, J. H., & Makinwa, K. A. A. (2012). A 20-b & 40-mV range read-out IC with 50-nV offset and 0.04 % gain error for bridge transducers. IEEE Journal of Solid-State Circuits, 47(9), 2152–2163.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jiang, H., Zhang, C. et al. A chopper current feedback instrument amplifier with bandpass amplification stage. Analog Integr Circ Sig Process 81, 763–775 (2014). https://doi.org/10.1007/s10470-014-0415-9

Download citation

Keywords

  • Instrument amplifier
  • Chopper
  • Bandpass
  • Indirect current feedback
  • Low offset