Skip to main content
Log in

A chopper-stabilized instrumentation amplifier using area-efficient self-trimming technique

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An area-efficient self-trimming technique for precision chopper-stabilized instrumentation amplifier (IA) is presented. The amplifier uses a reconfigurable differential pair for the input stage and it is automatically configured to reduce the mismatch of the differential pair, suppressing the chopper ripple. To confirm the effectiveness of the proposed scheme, an IA with the complete calibration logic is fabricated in a standard 180-nm CMOS and achieves \(0.06 {-}\hbox{mm}^2\) active area, less than \(3.5 {-}\upmu \hbox{V}\) offset voltage, \(13.5 {-}\hbox{nV}/\surd \hbox {Hz}\) input-referred noise, and \(194 {-} \upmu \hbox {A}\) current consumption. The noise efficiency factor of the amplifier is 7.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Enz, C. C., & Temes, G. C. (1996). Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization. Proceedings of the IEEE, 84(11), 1584–1614.

    Article  Google Scholar 

  2. Nielsen, J. H., & Bruun, E. (2004). A CMOS low-noise instrumentation amplifier using chopper modulation. Analog Integrated Circuits and Signal Processing, 42(1), 65–76.

    Article  Google Scholar 

  3. Tang, A. T. (2002). A 3 \(\mu \)V-offset operational amplifier with 20 nV/\(\surd \)Hz input noise PSD at DC employing both chopping and autozeroing. In IEEE International Solid-State Circuits Conference, Digest of Technical Papers (pp. 386–387).

  4. Wu, R., Makinwa, K. A., & Huijsing, J. H. (2009). A chopper current-feedback instrumentation amplifier with a 1 mHz 1/\(f\) noise corner and an AC-coupled ripple reduction loop. IEEE Journal of Solid-State Circuits, 44(12), 3232–3243.

    Article  Google Scholar 

  5. Wu, R., Huijsing, J. H., & Makinwa, K. A. (2011). A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. IEEE Journal of Solid-State Circuits, 46(12), 2794–2806.

    Article  Google Scholar 

  6. Fan, Q., Huijsing, J., & Makinwa, K. A. (2012). A capacitively coupled chopper instrumentation amplifier with a \(\pm \)30V common-mode range, 160 dB CMRR and 5 \(\mu \)V offset. In IEEE International Solid-State Circuits Conference, Digest of Technical Papers (pp. 374–376).

  7. Fan, Q., Huijsing, J., & Makinwa, K. A. (2013). A multi-path chopper-stabilized capacitively coupled operational amplifier with 20 V-input-common-mode range and 3 \(\mu \)V offset. In IEEE International Solid-State Circuits Conference, Digest of Technical Papers (pp. 176–177).

  8. Burt, R., & Zhang, J. (2006). A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path. IEEE Journal of Solid-State Circuits, 41(12), 2729–2736.

    Article  Google Scholar 

  9. Kusuda, Y. (2010). Auto correction feedback for ripple suppression in a chopper amplifier. IEEE Journal of Solid-State Circuits, 45(8), 1436–1445.

    Article  Google Scholar 

  10. Belloni, M., Bonizzoni, E., Fornasari, A., & Maloberti, F. (2010). A micropower chopper-CDS operational amplifier. IEEE Journal of Solid-State Circuits, 45(12), 2521–2529.

    Article  Google Scholar 

  11. Kusuda, Y. (2011). A 5.9 nV/\(\surd \)Hz chopper operational amplifier with 0.78 \(\mu \)V maximum offset and 28.3 nV/\({\rm ^o}\)C offset drift. In IEEE International Solid-State Circuits Conference, Digest of Technical Papers (pp. 242–244).

  12. Michel, F., & Steyaert, M. (2012). On-chip gain reconfigurable 1.2 V 24 \(\mu \)W chopping instrumentation amplifier with automatic resistor matching in 0.13 \(\mu \)m CMOS. In IEEE International Solid-State Circuits Conference, Digest of Technical Papers (pp. 372–374).

  13. Xu, J., Yazicioglu, R. F., Harpe, P., Makinwa, K. A., & Van Hoof, C. (2011). A 160 \(\mu \)W 8-channel active electrode system for EEG monitoring. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 555–567.

    Article  Google Scholar 

  14. Muller, R., Gambini, S., & Rabaey, J. M. (2012). A 0.013 mm\(^2\), 5 \(\mu \)W, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE Journal of Solid-State Circuits, 47(1), 232–243.

    Article  Google Scholar 

  15. Bolatkale, M., Pertijs, M. A., Kindt, W. J., Huijsing, J. H., & Makinwa, K. A. (2011). A single-temperature trimming technique for MOS-input operational amplifiers achieving 0.33 \(\mu \)V/\({\rm ^o}\)C offset drift. IEEE Journal of Solid-State Circuits, 46(9), 2099–2107.

    Article  Google Scholar 

  16. Akita, I., & Ishida, M. (2013). A 0.06 mm\(^2\) 14 nV/\(\surd \)Hz chopper instrumentation amplifier with automatic differential-pair matching. In IEEE International Solid-State Circuits Conference, Digest of Technical Papers (pp. 178–179).

  17. Kinget, P. R. (2005). Device mismatch and tradeoffs in the design of analog circuits. IEEE Journal of Solid-State Circuits, 40(6), 1212–1224.

    Article  Google Scholar 

  18. Yeh, T. H., Lin, J. C., Wong, S. C., Huang, H., & Sun, J. Y. (2001). Mismatch characterization of 1.8 V and 3.3 V devices in 0.18 \(\mu \)m mixed signal CMOS technology. In Proceedings of the 2001 International Conference on Microelectronic Test Structures (pp. 77–82).

  19. Razavi, B. (2002). Design of analog CMOS integrated circuits, International edition. New York: McGraw-Hill.

  20. Akita, I., Wada, K., & Tadokoro, Y. (2009). A 0.6-V dynamic biasing filter with 89-dB dynamic range in 0.18-\(\mu \)m CMOS. IEEE Journal of Solid-State Circuits, 44(10), 2790–2799.

    Article  Google Scholar 

  21. Lin, C. H., & Bult, K. (1998). A 10-b, 500-MSample/s CMOS DAC in 0.6 mm\(^3\). IEEE Journal of Solid-State Circuits, 33(12), 1948–1958.

    Article  Google Scholar 

  22. Akita, I., Itakura, T., & Shiraishi, K. (2011). Current-steering digital-to-analog converter with a high-PSRR current switch. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(11), 724–728.

    Article  Google Scholar 

  23. Guo, S., & Lee, H. (2009). Single-capacitor active-feedback compensation for small-capacitive-load three-stage amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(10), 758–762.

    Article  Google Scholar 

  24. Steyaert, M. S., & Sansen, W. M. (1987). A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE Journal of Solid-State Circuits, 22(6), 1163–1168.

    Article  Google Scholar 

  25. Fan, Q., Sebastiano, F., Huijsing, J. H., & Makinwa, K. A. (2011). A 1.8 \(\mu \)W 60 nV/\(\surd \)Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE Journal of Solid-State Circuits, 46(7), 1534–1543.

    Article  Google Scholar 

  26. Lewyn, L. L., Ytterdal, T., Wulff, C., & Martin, K. (2009). Analog circuit design in nanoscale CMOS technologies. Proceedings of the IEEE, 97(10), 1687–1714.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by MEXT Grant-in-Aid for Scientific Research 25820141, 25249047, and by CASIO Science Promotion Foundation. We thank also Rohm Corp. and Toppan Printing Corp. through the VLSI Design and Education Center (VDEC), the University of Tokyo, for chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ippei Akita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akita, I., Ishida, M. A chopper-stabilized instrumentation amplifier using area-efficient self-trimming technique. Analog Integr Circ Sig Process 81, 571–582 (2014). https://doi.org/10.1007/s10470-014-0371-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0371-4

Keywords

Navigation