Skip to main content
Log in

A 0.3-V power supply 2.4-GHz-band Class-C VCO IC with amplitude feedback loop in 65-nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A Class-C voltage-control-oscillator (VCO) IC with an amplitude feedback loop for ultra-low-voltage application is proposed. The Class-C VCO consists of an LC-VCO circuit and an amplitude feedback loop to shift LC-VCO bias condition from initial Class-AB start-up to steady Class-C low current oscillation. The amplitude feedback loop is formed by a detector and a comparator with low voltage supply. The LC-VCO IC has been designed, fabricated and fully evaluated using 65-nm CMOS technology. The fabricated Class-C VCO IC exhibits a measured phase noise of \(-\)111 dBc/Hz at 1 MHz offset from the 2.43 GHz carrier frequency at a supply voltage of only 0.3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kwok, K., & Luong, H. C. (2005). Ultra-low-voltage high-performance CMOS VCOs using transformer feedback. IEEE Journal of Solid-State Circuits, 40, 652–660.

    Article  Google Scholar 

  2. Li, G., Liu, L., Tang, Y., & Afshari, E. (2012). A low-phase-noise wide-tuning range oscillator based on resonant mode switching. IEEE Journal of Solid-State Circuits, 47, 1295–1308.

    Article  Google Scholar 

  3. Kurachi, S., Yoshimasu, T., Liu, H., Itoh, N., & Yonemura, K. (2007). A SiGe BiCMOS VCO IC with highly linear Kvco for 5-GHz-band wireless LANs. IEICE Transactions on Electronics, E90–C, 1228–1233.

    Article  Google Scholar 

  4. Liu, Q., Takigawa, Y., Kurachi, S., Itoh, N., & Yoshimasu, T. (2011). A 1.2–3.2 GHz CMOS VCO IC utilizing transformer-based variable inductors and AMOS varactors. IEICE Transactions on Electronics, E94–A, 568–573.

    Article  Google Scholar 

  5. Mazzanti, A., & Andreani, P. (2013). A push-pull class-C CMOS VCO. IEEE Journal of Solid-State Circuits, 48, 724–732.

    Article  Google Scholar 

  6. Mazzanti, A., & Andreani, P. (2008). Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 43, 2716–2729.

    Article  Google Scholar 

  7. Fanori, L., & Andreani, P. (2012). Low-phase-noise 3.4–4.5 GHz dynamic-bias class-C CMOS VCOs with a FoM of 191 dBc/Hz. In Proceedings of European Solid-State Circuits Conference (ESSCIRC) (pp. 406–409).

  8. Chen, J., Jonsson, F., Carlsson, M., Hedenas, C., & Zheng, L.-R. (2011). A low power, startup ensured and constant amplitude class-C VCO in 0.18 μm CMOS. IEEE Microwave and Wireless Components Letters, 21, 427–429.

    Article  Google Scholar 

  9. Deng, W., Okada, K., & Matsuzawa, A. (2013). Class-C VCO with amplitude feedback loop for robust start-up and enhanced oscillation swing. IEEE Journal of Solid-State Circuits, 48, 429–440.

    Article  Google Scholar 

  10. Yang, X., Uchida, Y., Xu, K., Wang, W., & Yoshimasu, T. (2013). 2.4 GHz-band ultra-low-voltage class-C LC-VCO IC in 65 nm CMOS technology. In Proceedings of Asia-Pacific Microwave Conference (APMC), 5–8 Nov. 2013, (pp. 325–327).

  11. Arora, N. (2007). Mosfet modeling for VLSI simulation: Theory and practice. Singapore: World Scientific.

    Google Scholar 

  12. Yang, X., Uchida, Y., Liu, Q., & Yoshimasu, T. (2012). Low-power ultra-wideband power detector IC in 130 nm CMOS technology. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 18–20 Sept. 2012, (p. 4).

  13. Ikeda, S., Kamimura, T., Lee, S., Kanemaru, N., Ito, H., Ishihara, N., Masu, & K. (2012). A 0.5-V 5.5-GHz class-C-VCO-based PLL with ultra-low-power ILFD in 65 nm CMOS. IEEE Asian Solid-State Circuits Conference (ASSCC), 12–14 Nov. 2012 (pp. 357–360).

  14. Okada, K., Nomiyama, Y., Murakami, R., & Matsuzawa, A. (2009). A 0.114-mW dual-conduction class-C CMOS VCO with 0.2-V power supply. Symposium on VLSI Circuits, 16–18 Jun. 2009 (pp. 228–229).

  15. Liu, P., Sah, S. P., Jung, J., Upadhyaya, P., Nguyen, T. N., & Heo, D. (2013). Design techniques for load-independent direct bulk-coupled low power QVCO. IEEE Transactions on Microwave Theory and Techniques, 61, 3658–3665.

    Article  Google Scholar 

  16. Siriburanon, T., Deng, W., Okada, K., & Matsuzawa, A. (2013). A constant-current-controlled class-C VCO using a self-adjusting replica biasing scheme. In Proceedings of the European Microwave Integrated Circuits Conference (ESSCIRC), 6–8 Oct. 2013 (pp. 109–112).

  17. Tohidian, M., Fotowat-Ahmadi, A., Kamarei, M., & Ndagijimana, F. (2011). High-swing class-C VCO. In Proceedings of European Solid-State Circuits Conference (ESSCIRC) (pp. 495–498).

  18. Leeson, D. B. (1966). A simple model of feedback oscillator noise spectrum. IEEE Proceedings Letters, 54, 329–330.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research Number 23360162. This work is supported by VDEC, University of Tokyo in collaboration with Cadence Design Systems Inc, Mentor Graphics Inc, and Agilent Technologies Japan Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Yoshimasu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Uchida, Y., Xu, K. et al. A 0.3-V power supply 2.4-GHz-band Class-C VCO IC with amplitude feedback loop in 65-nm CMOS. Analog Integr Circ Sig Process 81, 583–591 (2014). https://doi.org/10.1007/s10470-014-0351-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0351-8

Keywords

Navigation