Skip to main content

Advertisement

Log in

Design of CMOS three-stage amplifiers for fast-settling switched-capacitor circuits

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a time-domain design procedure for fast-settling three-stage amplifiers is presented. In the proposed design approach, the amplifier is designed to settle within a specific time with a given settling accuracy and circuit noise budget by optimizing both the power consumption and silicon die area. Both linear and nonlinear settling regions of three-stage amplifiers are considered and optimal values of the amplifier stages transconductance and compensation capacitors are obtained using the genetic algorithm optimization. Detailed design equations are provided and circuit level simulation results using a 90 nm CMOS technology are presented to evaluate the usefulness of the proposed design scheme respected to the previously reported design approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, Y.-J., Choi, H.-C., Lee, K.-H., & Ahn, G.-C. (2009). A 9.43-ENOB 160MS/s 1.2 V 65 nm CMOS ADC based on multi-stage amplifiers. In Proceedings of the IEEE custom integrated circuits conference (CICC), Sept. 2009 (pp. 271–274).

  2. Kim, Y.-J., & Lee, S.-H. (2012). A 10-b 120-MS/s 45 nm CMOS ADC using a re-configurable three-stage switched amplifier. Analog Integrated Circuits and Signal Processing, 72(1), 75–87.

    Article  Google Scholar 

  3. Aamir, S. A., Harikumar, P., & Wikner, J. J. (2013). Frequency compensation of high-speed, low-voltage CMOS multistage amplifiers. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS), May 2013 (pp. 381–384).

  4. Eschauzier, R., & Huijsing, J. (1995). Frequency compensation techniques for low-power operational amplifiers. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  5. Leung, K. N., & Mok, P. K. T. (2001). Nested Miller compensation in low-power CMOS design. IEEE Transactions on Circuits Systems II: Analog Digital and Signal Processing, 48(4), 388–394.

    Article  Google Scholar 

  6. Jalalifar, M., Yavari, M., & Raissi, F. (2008). A novel topology in reversed nested Miller compensation using dual-active capacitance. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS), May 2008 (pp. 2270–2273).

  7. Jalalifar, M., Yavari, M., & Raissi, F. (2008). A novel topology in RNMC amplifiers with single Miller compensation capacitor. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS), May 2008 (pp. 296–299).

  8. Guo, S., & Lee, H. (2009). Single-capacitor active-feedback compensation for small-capacitive-load three-stage amplifiers. IEEE Transactions on Circuits and Systems-II: Express Briefs, 56(10), 758–762.

    Article  Google Scholar 

  9. Garimella, A., Rashid, M. W., & Furth, P. M. (2010). Reverse nested Miller compensation using current buffers in a three-stage LDO. IEEE Transactions on Circuits and Systems-II: Express Briefs, 57(14), 250–254.

    Article  Google Scholar 

  10. Yavari, M. (2010). Active-feedback single Miller capacitor frequency compensation techniques for three-stage amplifiers. Journal of Circuits, Systems, and Computers, 19(7), 1381–1398.

    Article  Google Scholar 

  11. Siong, C. S., & Kwong, C. P. (2012). Cross feedforward cascode compensation for low-power three-stage amplifier with large capacitive load. IEEE Journal of Solid-State Circuits, 47(9), 2227–2234.

    Article  Google Scholar 

  12. Zushu, Y., Pui-In, M., Law, M., & Martins, R. P. (2013). A 0.016-mm2 144-µW three-stage amplifier capable of driving 1–15 nF capacitive load with >0.95-MHz GBW. IEEE Journal of Solid-State Circuits, 48(2), 527–540.

    Article  Google Scholar 

  13. Dai, G., Huang, C., & Yang, L. (2013). A dynamic zero frequency compensation for 3 A NMOS ultra-low dropout regulator. Analog Integrated Circuits and Signal Processing, 75(2), 329–333.

    Article  Google Scholar 

  14. Cannizzaro, S. O., Grasso, A. D., Mita, R., Palumbo, G., & Pennisi, S. (2007). Design procedures for three-stage CMOS OTAs with nested-Miller compensation. IEEE Transactions on Circuits and Systems-I: Regular Papers, 54(5), 933–940.

    Article  Google Scholar 

  15. Pugliese, A., Cappuccino, G., & Cocorullo, G. (2005). Nested Miller compensation capacitor sizing rules for fast-settling amplifier design. IET Electronic Letters, 41(10), 573–575.

    Article  Google Scholar 

  16. Pugliese, A., Cappuccino, G., & Cocorullo, G. (2008). Design procedure for settling time minimization in three-stage nested-Miller amplifiers. IEEE Transactions on Circuits and Systems-II: Express Briefs, 55(1), 1–5.

    Article  Google Scholar 

  17. Pugliese, A., Amoroso, F. A., Cappuccino, G., & Cocorullo, G. (2009). Settling time optimization for three-stage CMOS amplifier topologies. IEEE Transactions on Circuits and Systems-I: Regular Papers, 56(12), 2569–2582.

    Article  MathSciNet  Google Scholar 

  18. Nguyen, R., & Murmann, B. (2010). The design of fast-settling three-stage amplifiers using the open-loop damping factor as a design parameter. IEEE Transactions on Circuits and Systems-I: Regular Papers, 57(6), 1244–1254.

    Article  MathSciNet  Google Scholar 

  19. Yavari, M. (2011). A design procedure for CMOS three-stage NMC amplifiers. IEICE Transactions on Fundamentals, E94-A(2), 639–645.

    Article  Google Scholar 

  20. Yavari, M., Shoaei, O., & Rodriguez-Vazquez, A. (2006). Systematic and optimal design of CMOS two-stage opamps with hybrid cascode compensation. In Design automation and test in Europe (DATE), Munich, Mar 2006 (pp. 144–149).

  21. Seth, S., & Murmann, B. (2013). Settling time and noise optimization of a three-stage operational transconductance amplifier. IEEE Transactions on Circuits and Systems-I: Regular Papers, 60(5), 1168–1174.

    Article  MathSciNet  Google Scholar 

  22. Pugliese, A., Cappuccino, G., & Cocorullo, G. (2007). Settling time minimization of operational amplifiers. In Integrated circuit and system design. Power and timing modeling, optimization and simulation. Springer, New York (vol. 4644, pp. 107–116).

  23. Carusone, T. C., Johns, D., & Martin, K. (2012). Analog integrated circuit design (pp. 307–309). New York: Wiley.

    Google Scholar 

  24. Palumbo, G., & Pennisi, S. (2002). Design methodology and advances in nested-Miller compensation. IEEE Transactions on Circuits and Systems-I: Regular Papers, 49(07), 893–903.

    Article  Google Scholar 

  25. Dastgheib, A., & Murmann, B. (2008). Calculation of total integrated noise in analog circuits. IEEE Transactions on Circuits and Systems-I: Regular Papers, 55(10), 2988–2993.

    Article  MathSciNet  Google Scholar 

  26. Figueiredo, M., Santos-Tavares, R., Santin, E., Ferreira, J., Evans, G., & Goes, J. (2011). A two-stage fully differential inverter-based self-biased CMOS amplifier with high efficiency. IEEE Transactions on Circuits and Systems-I: Regular Papers, 58(7), 1591–1603.

    Article  MathSciNet  Google Scholar 

  27. Grasso, A. D., Marano, D., Palumbo, G., & Pennisi, S. (2010). Analytical comparison of reversed nested Miller frequency compensation techniques. International Journal of Circuit Theory and Applications, 38(7), 709–737.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golabi, S., Yavari, M. Design of CMOS three-stage amplifiers for fast-settling switched-capacitor circuits. Analog Integr Circ Sig Process 80, 195–208 (2014). https://doi.org/10.1007/s10470-014-0332-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0332-y

Keywords

Navigation