Skip to main content
Log in

Harmonic and intermodulation performance of double-gate CMOS inverting voltage amplifier

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a simple mathematical model for the transfer characteristic of the double gate (DG) CMOS inverting voltage amplifier. The model yields closed-form expressions for the amplitudes of the fundamental and distortion components of the output voltage resulting from a multisinusoidal input voltage for different scenarios and values of the bottom gates voltages. The special case of a two-tone equal-amplitude input voltage is considered in detail. The results show that the distortion performance of the DG-CMOS inverting voltage amplifier is strongly dependent on the bottom gates voltages and the amplitudes of the input sinusoids with the third-order intermodulation component dominating over the whole range of the input voltage amplitudes and different bottom gates voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J., & Elewa, T. (1987). Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Letters, 8, 410–412.

    Article  Google Scholar 

  2. Wong, H. S. P., Frank D. J., & Solomon, P. M. (1998). Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. Technical Digest of the IEEE International Electron Devices Meeting (Vol.1, pp. 407–410).

  3. Liu, Y. X., Masahara, M., Ishii, K., Tsutumi, T., Sekigawa, T., Takashima, H., et al. (2003). Flexible threshold voltage FinFETs with independent double gates and an ideal rectangular cross-section Si-Fin channel. Technical Digest of the IEEE International Electron Devices Meeting (Vol.1, pp. 18.8.1–18.8.3).

  4. Chiang, M. H., Kim, K., Chuang, C. T., & Tretz, C. (2006). Highly-density reduced-stack logic circuit techniques using independent-gate controlled double-gate devices. IEEE Transactions on Electron Devices, 53, 2370–2377.

    Article  Google Scholar 

  5. Kaya, S., & Ma, W. (2004). Optimization of RF linearity in DG-MOSFETs. IEEE Electron Device Letters, 25, 308–310.

    Article  Google Scholar 

  6. Kaya, S., Hamed, H. F. A., & Starzyk, J. A. (2007). Low-power tunable analog blocks based on nanoscale doubke-gate MOSFETs. IEEE Transactions on Circuits and Systems – II: Express Briefs, 54, 571–575.

    Article  Google Scholar 

  7. Huang, S., Lin, Z., Wei, Y., & He, J. (2010). Derivative superposition method for DG MOSFET application to RF mixer. Proceedings of Asia Symposium on Quality Electronic Design (pp. 361-365).

  8. Ma, W., Kaya, S., & Asenov, A. (2003). Scaling of RF linearity in DG and SOI MOSFETs. Proceedings of the IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications (pp. 255-260).

  9. Taur, Y., Linag, X., Wang, W., & Lu, H. (2004). A continuous, analytic drain-current model for DG MOSFETS. IEEE Electron Device Letters, 25, 107–109.

    Article  Google Scholar 

  10. Reyboz, M., Rozeau, O., Poiroux, T., Martin, P., & Jomaah, J. (2006). An explicit analytical charge-based model of undoped in independent double gate MOSFET. Solid-State Electronics, 50, 1276–1282.

    Article  Google Scholar 

  11. Reyboz, M., Martin, P., Poiroux, T., & Rozeau, O. (2009). Continuous model for independent double gate MOSFET. Solid-State Electronics, 53, 504–513.

    Article  Google Scholar 

  12. Dutta, P., Saymal, B., Mohankumar, N., & Sarkar, C. K. (2011). A surface potential based drain current model for asymmetric double gate MOSFETs. Solid-State Electronics, 56, 148–154.

    Article  Google Scholar 

  13. Dessai, G., Dey, A., Gildenblat, G., & Smit, G. D. J. (2009). Symmetric linearization method for double-gate and surrounding-gate MOSFET models. Solid-State Electronics, 53, 548–556.

    Article  Google Scholar 

  14. Abuelma’atti, M. T. (1994). Simple method for calculating Fourier coefficients of experimentally obtained waveforms. Proceedings IEE-Science Measurement, Technology, 141, 177–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Taher Abuelma’atti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuelma’atti, M.T. Harmonic and intermodulation performance of double-gate CMOS inverting voltage amplifier. Analog Integr Circ Sig Process 80, 315–321 (2014). https://doi.org/10.1007/s10470-014-0330-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0330-0

Keywords

Navigation