Skip to main content
Log in

A 97 dB 400 MHz rail to rail fully differential opamp based on split length FGMOS-MOS cell

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Recently introduced MOS-FGMOS split length cell has been used to increase the DC gain of a fully differential op amp. Resultant proposed opamp structure exhibits gain of 97 dB and unity gain bandwidth of 400 MHz with power consumption of 1.2 mW. An opamp design has been verified with Cadence Spectre using a 130 nm technology at 1.2 V and has a slew rate of \(53\,\hbox {V}/\mu \hbox {s}\) with a phase margin of \(78^{\circ }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Annema, A. J., Nauta, B., Van Langevelde, R., & Tuinhout, H. (2005). Analog circuits in ultra-deep-submicron CMOS. IEEE Journal of Solid-State Circuits, 40(1), 132–143.

    Article  Google Scholar 

  2. Baker, R. J. (2009). CMOS: Circuit Design, Layout and Simulation (3rd ed.). Hoboken: Wiley-IEEE.

    Google Scholar 

  3. Dadashi, A., Sadrafshari, S., Hadidi, K., & Khoei, A. (2010). An enhanced folded cascode opamp using positive feedback and bulk amplification in 0.35\(\mu\)m CMOS process. Springer, Analog Integrated Circuits and Signal Processing, 70(3), 283–292.

    Article  Google Scholar 

  4. Taherzadeh-Sani, M., & Hamoui, A. A. (2011). A 1-V process-insensitive current-scalable two-stage opamp with enhanced DC gain and settling behavior in 65nm digital CMOS. IEEE Journal of Solid State Circuits, 46(3), 660–668.

    Article  Google Scholar 

  5. Yan, S., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transactions Analog Inegrated Circuits and Systems, E00A(2), 1–17.

    Google Scholar 

  6. Comer, D. J., Comer, D. T., & Pratap Singh, R. (2010). A high-gain low-power CMOS op amp using composite cascode stages. Proceedings of the 53rd midwest symposium on circuits and systems, pp. 600–603, June 2010.

  7. Jasdeep, K., et al. (2008). Low voltage high performance self cascode CCII. IEEE international multitopic conference, pp. 7–11, Dec 2008.

  8. Cao, T., Han, Y., Liu, X., et al. (2012). A 0.9-V high-PSRR bandgap with self-cascode current mirror’, IEEE international conference on circuits and systems (ICCAS), pp. 267–271, Oct 2012.

  9. Bhardwaj, K., & Rajput, S. S. (2009). 1.5V high performance OP AMP using self cascode structure. IEEE student conference on research and development (SCOReD), pp. 254–257, Nov 2009.

  10. Kumar, A., & Sharma, G. K. (2009). Bulk driven circuits for low voltage applications. Journal of Active and Passive Electronic Devices, 4(3), 237–245.

    Google Scholar 

  11. Sharma, S., Rajput, S. S., et al. (2002). FGMOS based wide range low voltage current mirror and its applications. Asia-pacific conference on circuits and systems, pp. 331–334, vol. 2, 2002.

  12. Kumar, A. (2013). Split length FGMOS MOS cell: A new block for low voltage applications. Springer, Analog Integrated Circuits and Signal Processing, 75(3), 399–405.

    Article  Google Scholar 

  13. Ahuja, B. K. (1983). An improved frequency compensation technique for CMOS operational amplifiers. IEEE Journal of Solid State Circuits, SC–18(6), 629–633.

    Article  MathSciNet  Google Scholar 

  14. Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill.

    Google Scholar 

  15. Willy, M. C. Sansen. (2006). Analog design essentials. Berlin: Springer.

    Google Scholar 

  16. Baker, R. J. (2008). CMOS: CMOS: Mixed-signal circuit design (2nd ed.). Hoboken: Wiley-IEEE.

    Google Scholar 

  17. Rajput, S. S., & Jamuar, S. S. (2002). Low voltage analog circuit design techniques. Circuits and Systems Magazine, 2(1), 24–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlad Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A. A 97 dB 400 MHz rail to rail fully differential opamp based on split length FGMOS-MOS cell. Analog Integr Circ Sig Process 80, 305–314 (2014). https://doi.org/10.1007/s10470-014-0314-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0314-0

Keywords

Navigation