Advertisement

A low-power temperature-compensated CMOS relaxation oscillator

  • Yuchi Ni
  • Marvin OnabajoEmail author
Article

Abstract:

A relaxation oscillator with integrated voltage and current reference generation circuitry is presented in this paper for on-chip clock signal generation in low-power applications. Designed and simulated in 0.11 μm CMOS technology, the oscillator provides a clock signal at the frequency of 20 kHz with a temperature coefficient of 314 ppm/ °C over a range from −20 to 80 °C. The oscillator’s output signal frequency has a standard deviation of 7.9 % under the influence of device mismatches. It operates with a supply voltage of 1.2 V and has a dynamic power consumption of 4.9 μW at room temperature. An integrated voltage and current reference generator was developed to provide two reference voltages at 484.6 and 663.5 mV with simulated temperature coefficients of 7.5 and 16 ppm/ °C over a range from −20 to 80 °C respectively, as well as a reference current of 26.84 nA with a temperature coefficient of 166 ppm/ °C over the same temperature range.

Keywords

Relaxation oscillator Temperature compensation Process variation Low-power analog design Reference voltage generation Reference current generation 

Notes

Acknowledgments

This work was supported in part by the NSF Grant ECCS-1349692. The authors thank Chun-hsiang Chang from Northeastern University for valuable discussions.

References

  1. 1.
    Bala, F., Nandy, T. (2005) Programmable high frequency RC oscillator. Proceedings of IEEE 18th International Conference VLSI Design, 511–515.Google Scholar
  2. 2.
    Barnett, R., Liu, J. (2006) A 0.8 V 1.52 MHz MSVC relaxation oscillator with inverted mirror feedback reference for UHF RFID, Proceedings IEEE Custom Integrated Circuits Conference (CICC), 769–772.Google Scholar
  3. 3.
    Cannillo, F., Toumazou, C., & Lande, T. S. (2009). Nanopower subthreshold MCML in submicrometer CMOS technology. IEEE Transactions on Circuits and Systems, 56(8), 1598–1611.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Hwang, Changku, Bibyk, S., Ismail, M., & Lohiser, B. (1995). A very low, micropower, low voltage CMOS oscillator for noncardiac pacemakers. IEEE Transactions On Circuits And Systems-I Fundamental Theory And Applications, 42(11), 962–966.CrossRefGoogle Scholar
  5. 5.
    Chang, C.-W., Lo, T.-Y., Chen, C.-M., Wu, K.-H., Hung, C.-C. (2007) A low-power CMOS voltage reference circuit based on subthreshold operation. Proceedings of IEEE International Symposium on Circuits and Systems, 3844–3847.Google Scholar
  6. 6.
    De Vita, G., Marraccini, F., and Iannaccone, G. (2007) Low-voltage low-power CMOS oscillator with low temperature and process sensitivity, Proceedings of IEEE International Symposium (ISCAS), 2152–2155.Google Scholar
  7. 7.
    Denier, U. (2010). Analysis and design of an ultralow-power CMOS relaxation oscillator. IEEE Transactions Very Large Scale Integration (VLSI) Systems, 57(8), 1973–1982.MathSciNetGoogle Scholar
  8. 8.
    Geraedts, P. F. J., Van Tuijl, E., Klumperink, E. A. M., Wienk, G. J. M., and Nauta. (2008) A 90 μW 12 MHz relaxation oscillator with a −162 dB FOM, IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, 318–618.Google Scholar
  9. 9.
    Lasanen, K., & Kostamovaara, J. (2008). A 1.2-V CMOS RC oscillator for capacitive and resistive sensor applications. IEEE Transactions on Instrumentation and Measurement, 57(12), 2792–2800.CrossRefGoogle Scholar
  10. 10.
    Onabajo, M., & Silva-Martinez, J. (2012). Mismatch reduction technique for transistors with minimum channel length. Analog Integrated Circuits and Signal Processing, 70(3), 429–435.CrossRefGoogle Scholar
  11. 11.
    Onabajo, M., & Silva-Martinez, J. (2012). Analog circuit design for process variation-resilient systems-on-a-chip. New York: Springer.CrossRefGoogle Scholar
  12. 12.
    Osaki, Y., Hirose, T., Kuroki, N. and Numa, M. (2010) Nano-ampere CMOS current reference with little temperature dependence using small offset voltage. Proceedings of IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 668–671.Google Scholar
  13. 13.
    Sansen, W. M., Op’t Eynde, F., & Steyaert, M. (1988). A CMOS temperature-compensated current reference. IEEE Journal of Solid-State Circuits, 23(3), 821–824.CrossRefGoogle Scholar
  14. 14.
    Wang, T.-M., Ker, M.-D., & Liao, H.-T. (2009). Design of mixed-voltage-tolerant crystal oscillator circuit in low-voltage CMOS technology. IEEE Transactions on Circuits and Systems I, 56(5), 966–974.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ueno, Ke, Hirose, T., Asai, T., & Amemiya, Y. (2009). A 300 nW, 15 ppm/C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 44(7), 2047–2054.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringNortheastern UniversityBostonUSA

Personalised recommendations