Skip to main content
Log in

A low-power parametric integrator for wideband switched-capacitor ΣΔ modulators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a new low-power MOS parametric integrator (MPI) for the design of wideband discrete time sigma-delta (ΣΔ) modulators. The MPI is implemented with MOS capacitors, which provide the required gain by switching from inversion in the sampling phase into depletion in the amplification phase. Analysis along with simulation results illustrate that MPI consumes very low power dissipation compared to the conventional active integrators with some negligible performance changes. To verify this, the MPI is used in two wideband ΣΔ modulators, one with 8-bit resolution and the other with 13-bit resolution with input bandwidth and sampling frequency of 12.5 and 200 MHz, respectively. The first one is a second order single stage ΣΔ modulator and the second one is a MASH 2-2 modulator, both implemented in 0.18-μm CMOS technology. Simulation results indicate that these modulators save a significant amount of power consumption when their second integrator is replaced by MPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ortmanns, M., & Gerfers, F. (2006). Continuous-time sigma-delta A/D conversion: fundamentals, performance limits and robust implementations. Springer.

  2. Breems, L. J., Rutten, R., & Wetzker, G. (2004). A cascaded continuous-time ΣΔ modulator with 67-dB dynamic range in 10-MHz bandwidth. IEEE Journal Solid State Circuits, 39, 2152–2160.

    Article  Google Scholar 

  3. Lee, K. (2009). Mixed CT/DT cascaded sigma-delta modulator. Journal of Semiconductor Technology and Science, 9, 233–239.

    Article  Google Scholar 

  4. Fiorenza, J. K., Sepke, T., Holloway, P., Sodini, C. G., & Lee, H.-S. (2006). Comparator-based switched-capacitor circuits for scaled CMOS technologies. IEEE Journal of Solid-State Circuits, 41(12), 2658–2668.

    Article  Google Scholar 

  5. Yang, H., & Sarpeshkar, R. (2005). A time-based energy-efficient analog-to-digital converter. IEEE Journal of Solid-State Circuits, 40(8), 1590–1601.

    Article  Google Scholar 

  6. Chen, F., Chen, F., Bakkaloglu, B., & Ramaswamy, S. (2008). Design and analysis of a CMOS passive ΣΔ ADC for low power RF transceivers. Analog Integrated Circuits and Signal Processing, 59(2), 129–141. Springer.

    Article  Google Scholar 

  7. Sai, T., & Sugimoto, Y. (2009). Design of a 1-V operational passive sigma-delta modulator. IEEE ECCTD. doi:10.1109/ECCTD.2009.5275088.

    Google Scholar 

  8. Zanbaghi, R., & Fiez, T. S. (2009). A novel low power hybrid loop filter for continuous-time sigma-delta modulators. IEEE ISCAS. doi:10.1109/ISCAS.2009.5117735.

    Google Scholar 

  9. Hussain, A., Sai-Weng, S., Seng-Pan, U., & Martins, R. P. (2011). Hybrid loop filter sigma delta modulator with NTF zero compensation. In IEEE ISOCC (pp. 76–79).

  10. Song, T., Cao, Zh, & Yan, Sh. (2008). A 2.7-mW 2-MHz continuous-time modulator with a hybrid active–passive loop filter. IEEE Journal of Solid-State Circuits, 43(2), 330–341.

    Article  Google Scholar 

  11. Collin, R. (1992). Foundations for microwave engineering (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  12. Oliveira, J., Goes, J., Figueiredo, M., Santin, E., Fernandes, J., & Ferreira, J. (2010). An 8-bit 120-MS/s interleaved CMOS pipeline ADC based on MOS parametric amplification. IEEE Transactions on Circuits and Systems II, 57(2), 105–109.

    Article  Google Scholar 

  13. Shylu, D. S., Moni, D. J., Prasad, D. D. R., Suganya, T., & Prakash, N. (2011). Noiseless MOS parametric amplification in pipeline ADC. In IEEE ICECT (pp. 292–296).

  14. Figueiredo, P. M., & Vital, J. C. (2004). The MOS capacitor amplifier. IEEE Transactions on Circuits and Systems II, 51(3), 111–115.

    Article  Google Scholar 

  15. Shrimali, H., & Chatterjee, Sh. (2011). Distortion analysis of a three-terminal MOS-based discrete-time parametric amplifier. IEEE Transactions on Circuits and Systems II, 58(12), 902–905.

    Article  Google Scholar 

  16. Meyer, R., & Stephens, M. (1975). Distortion in variable-capacitance diodes. IEEE Journal of Solid-State Circuits, 10(1), 47–54.

    Article  Google Scholar 

  17. Abdelfattah, K., & Razavi, B. (2006). Modeling opamp nonlinearity in switched-capacitor sigma-delta modulators. In IEEE CICC (pp. 197–200).

  18. Schreier, R., Silva, J., Steensgaard, J., & Temes, G. C. (2005). Design-oriented estimation of thermal noise in switched-capacitor circuits. IEEE Transactions on Circuits and Systems I, 52(11), 2358–2368.

    Article  Google Scholar 

  19. Ranganathan, S., & Tsividis, Y. (2003). Discrete-time parametric amplification based on a three-terminal MOS varactor: Analysis and experimental results. IEEE Journal of Solid-State Circuits, 38(12), 2087–2093.

    Article  Google Scholar 

  20. Murmann, B. (2012). Thermal noise in track-and-hold circuits analysis and simulation techniques. IEEE Solid-State Circuits Magazine, 4(2), 46–54.

    Article  Google Scholar 

  21. Yukawa, A. (1985). A CMOS 8-bit high-speed A/D converter IC. IEEE Journal of Solid-State Circuits, 20(3), 775–779.

    Article  Google Scholar 

  22. Dezzani, A., & Andre, E. (2003). A 1.2-V dual-mode WCDMA/GPRS sigma-delta modulator. International Solid-State Circuits Conference Digest of Technical Papers, 1(3), 58–59.

    Article  Google Scholar 

  23. Nam, K., Lee, S.-M., Su, D. K., & Wooley, B. (2005). A low-voltage low power sigma-delta modulator for broadband analog-to-digital conversion. IEEE Journal of Solid-State Circuits, 40(9), 1855–1864.

    Article  Google Scholar 

  24. Schreier, R., & Temes, G. C. (2005). Understanding delta-sigma data converters. New York: IEEE Press/Wiley.

    Google Scholar 

  25. Bult, K., & Geelen, G. (1990). A fast-settling CMOS opamp for SC circuits with 90-dB dc gain. IEEE Journal of Solid-State Circuits, 25(12), 1379–1384.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Nabavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyedhosseinzadeh, B.H., Nabavi, A. A low-power parametric integrator for wideband switched-capacitor ΣΔ modulators. Analog Integr Circ Sig Process 78, 453–464 (2014). https://doi.org/10.1007/s10470-013-0232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0232-6

Keywords

Navigation