Skip to main content

An ultra-low-voltage ultra-low-power CMOS active mixer


The scaling of CMOS technology has greatly influenced the design of analog and radio-frequency circuits. In particular, as technology advances, due to the use of lower supply voltage the available voltage headroom is decreased. In this paper, after a brief overview of conventional low-power CMOS active mixer structures, we introduce an active mixer structure with sub-mW-level power consumption that is capable of operating from a supply voltage comparable or lower than the threshold voltage of the transistor. In addition, the proposed architecture provides a performance and conversion gain (CG) that compares favorably or exceeds those of the state-of-the-art designs. As a proof-of-concept, a wide-band DC to 8.5 GHz down-conversion mixer is designed and fabricated in a 90-nm CMOS process. Measurement results show that the mixer achieves a CG as high as 18 dB while consuming 98 μW from a 0.3-V supply.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32


  1. 1.

    The list of these publications is available at


  1. 1.

    Behzad R. (2012). RF Microelectronics (2nd ed.). Prentice Hall: Englewood Cliffs.

    Google Scholar 

  2. 2.

    Han, G., & Sanchez-Sinencio, E. (1998). CMOS transconductance multipliers: A tutorial.  IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(12), 1550–1563.

    Google Scholar 

  3. 3.

    Kan, K., Ma, D., & Luong, H. (2000). Design theory and performance of 1-GHz CMOS downconversion and upconversion mixers. Analog Integrated Circuits and Signal Processing, 24(2), 101–111.

    Article  Google Scholar 

  4. 4.

    Lee, H., & Mohammadi, S. (2007). A 500 μW 2.4 GHz CMOS Subthreshold Mixer for Ultra Low Power Applications. In IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (pp. 325–328) 3–5 June 2007.

  5. 5.

    Masnadi Shirazi, A. H., & Mirabbasi, S. (2012). An ultra-low-voltage CMOS mixer using switched-transconductance, current-reuse and dynamic-threshold-voltage gain-boosting techniques. In IEEE 10th NEWCAS, 2012 (pp. 393–396) 17–20 June 2012.

  6. 6.

    Klumperink, E. A. M., Louwsma, S.M., Wienk, G. J. M., & Nauta, B. (2004). A CMOS switched transconductor mixer. IEEE Journal of Solid-State Circuits, 39(8), 1231–1240.

    Article  Google Scholar 

  7. 7.

    Terrovitis, M.T., & Meyer, R.G. (1999). Noise in current-commutating CMOS mixers. IEEE Journal of Solid-State Circuits, 34(6), 772–783.

    Article  Google Scholar 

  8. 8.

    Assaderaghi, F., Sinitsky, D., Parke, S. A., Bokor, J., Ko, P. K., & Hu, C. (1997). Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI . IEEE Transactions on Electron Devices, 44(3), 414–422.

    Article  Google Scholar 

  9. 9.

    Lee, S. -G. & Choi, J. -K. (2000). Current-reuse bleeding mixer. Electronics Letters, 36(8), 696–697.

    Google Scholar 

  10. 10.

    Im, D., Nam, I., Kim, H. -T, & Lee, K. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE Journal of Solid-State Circuits, 44(3), 686–698.

    Article  Google Scholar 

  11. 11.

    Nam, I., Kim, B., & Lee, K. (2005). CMOS RF amplifier and mixer circuits utilizing complementary characteristics of parallel combined NMOS and PMOS devices. IEEE Transactions on Microwave Theory and Techniques, 53(5), 1662–1671.

    Article  Google Scholar 

  12. 12.

    Parvizi, M. & Nabavi, A. (2009). Improved derivative superposition scheme for simultaneous second- and third-order distortion cancellation in LNAs. Electronics Letters, 45(25), 1323–1325.

    Article  Google Scholar 

  13. 13.

    Galal, A. I. A., Pokharel, R., Kanaya, H., & Yoshida, K. (2012). High linearity technique for ultra-wideband low noise amplifier in 0.18 μm CMOS technology. International Journal of Electronics and Communications, 66, 12–17.

    Article  Google Scholar 

  14. 14.

    Webster, D. R., Haigh, D. G., Scott, J. B., & Parker, A. E. (May 1996). Derivative superposition-a linearization technique for ultra broadband systems. IEE Colloquium Wideband Circuits, Modeling and Techniques, 3/1–3/14.

    Google Scholar 

  15. 15.

    Vidojkovic, V., et al. (2006). A low-voltage folded-switching mixer in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 40, 1259–1264.

    Article  Google Scholar 

  16. 16.

    He, S., & Saavedra, C. E. (2012). An ultra-low-voltage and low-power 2 subharmonic downconverter mixer. IEEE Transactions on Microwave Theory and Techniques, 60(2), 311–317.

    Article  Google Scholar 

Download references


This research is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada. CAD tools and access to technology are facilitated by CMC Microsystems. The authors would also like to thank Dr. Roberto Rosales and Hooman Rashtian for their technical assistance, and Roozbeh Mehrabadi for CAD tool support.

Author information



Corresponding author

Correspondence to Amir Hossein Masnadi Shirazi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shirazi, A.H.M., Mirabbasi, S. An ultra-low-voltage ultra-low-power CMOS active mixer. Analog Integr Circ Sig Process 77, 513–528 (2013).

Download citation


  • CMOS RF mixer
  • Ultra low power
  • Ultra low voltage
  • Wireless
  • Transceiver