Skip to main content
Log in

A 4 μW dual-modulus frequency divider with 198 % locking range for MICS band applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design and performance of an ultra-low-power 4/5 frequency divider based on a CMOS ring oscillator. Measurements show a 198 % locking range (6 MHz–1.3 GHz) for both division ratios at room temperature, covering the MICS band and 433 and 915 MHz ISM bands while consuming only 4.07 μW from a 1 V supply at 400 MHz. The wide locking range and low power consumption makes it very suitable for ultra-low-power wireless systems. The divider is fabricated in a 90 nm CMOS process and occupies 45 μm2 of area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hu, J. R. & Otis, B. P. (2008). A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90 nm CMOS. In IEEE Radio Frequency Integrated Circuits Symposium (pp. 665–668).

  2. Wong, J. M. C., Cheung, V. S. L., & Luong, H. C. (2003). A 1-V 2.5-mW 5.2-GHz frequency divider in a 0.35 μm CMOS process. IEEE Journal of Solid-State Circuits, 38(10), 1643–1648.

    Article  Google Scholar 

  3. Heydari, P., & Mohanavelu, R. (2006). A 40-GHz flip-flop-based frequency divider. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(12), 1358–1362.

    Article  Google Scholar 

  4. Lu, S., Meng, Y., Wang, F. & Jiang, X. (2013). A low-power dual-modulus prescaler in 90 nm CMOS technology. Advances in Mechanical and Electronic Engineering, LNEE 178, 163–168.

    Google Scholar 

  5. Motoyoshi, M. & Fujishima, M. (2006). 43 μW 6 GHz CMOS divide-by-3 frequency divider based on three-phase harmonic injection locking. In IEEE Asian Solid-State Circuits Conference (pp. 183–186).

  6. Kai, Z., Islam, S. K., Holleman, J. H. & Song, Y. (2011). A low-power dual-modulus injection-locked frequency divider for medical implants. In IEEE Radio and Wireless Symposium (pp. 414–417).

  7. Zhang, W., Zhang, L., Zhang, X., & Liu, Y. (2013). A dual-modulus injection-locked frequency divider with large locking range. Microwave and Optical Technology Letters, 55(2), 269–272.

    Article  Google Scholar 

  8. Yu, X. P., Lu, Z. H., Lim, W. M., & Yeo, K. S. (2013). 0.6mW 6.3 GHz 40 nm CMOS divide-by-2/3 prescaler using heterodyne phase-locking technique. Electronics Letters, 49(7), 471–472.

    Article  Google Scholar 

  9. Jahan, M. S., & Holleman, J. (2012). A 3.3 µW dual-modulus frequency divider with 189 % locking range for MICS band applications. In IEEE International Symposium on Circuits and Systems (pp. 1504–1507).

  10. Lo, Y.-C., Chen, H.-P., Silva-Martinez, J. & Hoyos, S. (2009). A 1.8 V, sub-mW, over 100% locking range, divide-by-3 and 7 complementary-injection-locked 4 GHz frequency divider. In Custom Integrated Circuits Conference (pp. 259–262).

  11. Chiu, W.-H., Chan, T.-S. & Lin, T.-H. (2007). A 5.5-GHz 16-mW fast-locking frequency synthesizer in 0.18-μm CMOS. In IEEE Asian Solid-State Circuits Conference (pp. 456–459).

  12. Weste, N. H. E., & Harris, D. M. (2011). CMOS VLSI design: A circuits and systems perspective. Boston: Addison-Wesley.

    Google Scholar 

  13. Levantino, S., Romano, L., Pellerano, S., Samori, C., & Lacaita, A. L. (2004). Phase noise in digital frequency dividers. IEEE Journal of Solid-State Circuits, 39(5), 775–784.

    Article  Google Scholar 

  14. Liu, C. (2006). Jitter in oscillators with 1/f noise sources and application to true RNG for cryptography. (PhD dissertation, Dept. Electrical & Computer Engineering, Worcester Polytechnic Institute).

  15. Hajimiri, A., Limotyrakis, S., & Lee, T. H. (1999). Jitter and phase noise in ring oscillators. IEEE Journal of Solid-State Circuits, 34(6), 790–804.

    Article  Google Scholar 

  16. Tong, H., Cheng, S., Karsilayan, A. I., & Silva-Martinez, J. (2007). An injection-locked frequency divider with multiple highly nonlinear injection stages and large division ratios. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(4), 313–317.

    Article  Google Scholar 

  17. Luo, T.-N., & Chen, Y.-J. E. (2008). A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider. IEEE Transactions on Microwave Theory and Techniques, 56(3), 620–625.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahriar Jahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahan, M.S., Holleman, J. A 4 μW dual-modulus frequency divider with 198 % locking range for MICS band applications. Analog Integr Circ Sig Process 77, 549–556 (2013). https://doi.org/10.1007/s10470-013-0150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0150-7

Keywords

Navigation