Skip to main content
Log in

Neural inverse optimal control applied to type 1 diabetes mellitus patients

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Inverse optimal trajectory tracking via a control Lyapunov function (CLF) for discrete time non-linear systems is developed and applied to type 1 diabetes mellitus patients control. The control law calculates the insulin delivery rate in order to prevent hyperglycemia and hypoglycemia levels. To synthesize the inverse optimal control law a quadratic candidate CLF is used. The proposed algorithm is tuned to follow a desired trajectory; this trajectory reproduces the glucose absorption of a healthy person. Simulation results applied for two different patients illustrate the applicability of the control law and a comparison with inverse optimal neural control via passivity is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It is a trade mark of the MathWorks, Inc.

References

  1. Kovatchev, B. P., Breton, M., Man, C. D., & Cobelli, C. (2009). In silico preclinical trials: A proof concept in closed-loop control of type 1 diabetes. Journal of Diabetes Science and Technology, 3(3), 44–55.

    Google Scholar 

  2. Sparacino, G., Zanderigo, F., Corazza, S., Maran, A., Facchinetti, A., & Cobelli, C. (2007). Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Transactions on Biomedical Engineering, 54(5), 931–937.

    Article  Google Scholar 

  3. Hovorka, R., Allen, J. M., Elleri, D., Chassin, L. J, Harris, J., Xing, D., Kollman, C., Hovorka, T., Larsen, A. M.F., Nodale, M., De Palma, A., Wilinska, M. E., Acerini, C. L., & Dunger, D. B. (2010). Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: A phase 2 randomised crossover trial. The Lancet, 375(9716), 743–751.

    Article  Google Scholar 

  4. Bode, B. W. (1998). Medical management of type 1 diabetes, 4th ed. Alexandria, VA: American Diabetes Association.

    Google Scholar 

  5. Man, C. D., Raimondo, D. M., Rizza, R. A., & Cobelli, C. (2007). Gim simulation software of meal glucose-insulin model. Journal of Diabetes Science and Technology, 1(3), 323–330.

    Google Scholar 

  6. Palerm, C. C. (2010). Physiologic insulin delivery with insulin feedback: A control systems perspective. Computer Methods and Programs in Biomedicine, 102(2),130–137.

    Article  Google Scholar 

  7. Steil, G. M., Panteleon, A. E., & Rebrin, K. (2004). Closed-loop insulin de delivery the path to physiological glucose control. Advanced Drug Delivery Reviews, 56, 125–144.

    Article  Google Scholar 

  8. Percival, M. W., Dassau, E., Zisser, H., Jovanovic, L., & Doyle, F. (2009). Practical approach to design and implementation of a control algorithm in an artificial pancreatic beta cell. Industrial & Engineering Chemistry Research, 48, 6059–6067.

    Article  Google Scholar 

  9. Magni, L., Forgione, M., Toffanin, C., Man, C. D., Kovatchev, B., De Nicolao, G., & Cobelli, C. (2009). Run-to-run tuning of model predictive control for type 1 diabetes subjects, in silico trial. Journal of Diabetes Science and Technology, 3, 1091–1098.

    Google Scholar 

  10. Patek, S. D., Bequette, W., Breton, M., Buckingham, B. A., Dassau, E., Doyle, F., Lum, J., Magni, L., & Zizzer, H. (2009). In silico Preclinical trials: Methodology and engineering guide to closed-loop control in type 1 diabetes mellitus. Journal of Diabetes Science and Technology, 3(2), 269–282.

    Google Scholar 

  11. Wang, Y., Dassau, E., & Doyle, F. J. (2010). Closed-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE transactions on Biomedical Engineering, 57(2), 211–219.

    Article  Google Scholar 

  12. Cobelli, C., Man, C. D., Sparacio, G., Magni, L., De Nicolao, G., & Kovatchev, B. P. (2009). Diabetes: Models, signals and control.IEEE Reviews in Biomedical Engineering, 1(2), 54–96.

    Article  Google Scholar 

  13. Parker, R. S., Doyle, F. J., & Peppas, N. A. (2001). The intravenous route to blood glucose control, a review of control algorithms for noninvasive monitoring and regulation in type I diabetic patients. IEEE Engineering in Medicine and Biology, 20(1), 65–73.

    Article  Google Scholar 

  14. Parker, R. S., & Doyle, F. J. (2001). Control-relevant modeling in drug delivery. Advanced Drug Delivery Reviews, 48, 211–228.

    Article  Google Scholar 

  15. Ali, Sk. F., & Padhi, R. (2009). Optimal blood glucose regulation of diabetic patients using single network adaptive critics. Optimal Control Applications and Methods, 32, 196–214.

    Article  MathSciNet  Google Scholar 

  16. Kovács, L., Kulcsár, B., György, A., & Benyól, Z. (2010). Robust servo control of a novel type 1 diabetic model. Optimal Control Applications and Methods, 32, 215–238.

    Article  Google Scholar 

  17. Quiroz, G., Flores-Gutiérrez, C. P. & Femat, R. (2011). Suboptimal H hyperglycemia control on T1DM accounting biosignals of exercise and nocturnal hypoglycemia. Optimal Control Applications and Methods, 32, 239–252.

    Article  MathSciNet  MATH  Google Scholar 

  18. Freeman, R. A., & Kokotovi¢, P. V. (1996). Robust nonlinear control design: State-space and Lyapunov techniques. Cambridge, MA: Birkhauser Boston Inc.

    Book  MATH  Google Scholar 

  19. Sorensen, J. T. (1985). A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. Ph.D. Thesis, MIT, Cambridge, MA, USA.

  20. Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici, M. O., Pieber, T. R., Schaller, H. C., Schaupp, L., Vering, T., & Wilinska, M. E. (2004). Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological measurement, 25(4), 905–920.

    Article  Google Scholar 

  21. Man, C. D., Rizza, R. A., & Cobelli, C. (2007). Meal simulation model of the glucose-insulin system.IEEE Transactions on Biomedical Engineering, 54(10), 1740–1749.

    Article  Google Scholar 

  22. Gonzalez-Olvera, M. A., Gallardo-Hernandez, A. G., Tang, Y., Revilla-Monsalve, M. C., & Islas-Andrade, S. (2010). A discrete-time recurrent neurofuzzy network for black-box modeling of insulin dynamics. International Journal of Neural Systems, 20(2), 149–158.

    Article  Google Scholar 

  23. El-Jabali, A. K. (2005). Neural network modeling and control of type 1 diabetes mellitus. Bioprocess and Biosystems Engineering, 27(2), 75–79.

    Article  Google Scholar 

  24. Mougiakakouv, S. G., Prountzou, A., Iliopoulou, D., Nikita, K. S., Vazeou, A., & Bartsocas, C. S. (2006). NN based glucose-insulin metabolism models for children with type 1 diabetes. Proceedings of the 28th Annual Conference of IEEE EMBS, 1, 3545–3548.

  25. Sandham, W. A., Hamilton, D. J., Japp, A., & Patterson, K. (1998). Neural network and neuro-fuzzy systems for improving diabetes therapy. Proceedings of 20th Annual International Conference of the IEEE EMBS, 1(3), 1438–1441.

  26. Leon, B. S., Alanis, A. Y., Sanchez, E. N., Ornelas, F., & Ruiz-Velazquez, E. (2011). Inverse optimal trajectory tracking for discrete time nonlinear positive systems. Proceedings of the 50th IEEE Conference on Decision and Control, Orlando, Florida, USA.

  27. Norgaard, M., Poulsen, N. K., & Ravn, O. (2000). Advances in derivative-free state estimation for nonlinear systems. Technical Report IMM-REP-1988-15 (revised edition), Technical University of Denmark.

  28. Leon, B. S., Alanis, A. Y., Sanchez, E. N., Ornelas-Tellez, F., & Ruiz-Velazquez, E. (2012). Inverse optimal neural control of blood glucose level for type 1 diabetes mellitus patients. Journal of the Franklin Institute, 349(5), 1851–1870.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirk, D. E. (1970). Optimal control theory: An introduction. Englewood Clifs, NJ: Prentice-Hall

    Google Scholar 

  30. Lewis, F. L., & Syrmos, V. L. (1995). Optimal control. New York: Wiley.

    Google Scholar 

  31. Basar, T., & Olsder, G. J. (1995). Dynamic noncooperative game theory, 2nd ed. New York: Academic Press.

    Google Scholar 

  32. Al-Tamimi, A., & Lewis, F. L. (2008). Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof. IEEE Transactions on Systems, Man, Cybernetics-Part B, 38(4), 943–949.

    Article  Google Scholar 

  33. Ohsawa, T., Bloch, A. M., & Leok, M. (2010). Discrete Hamilton-Jacobi theory and discrete optimal control. Proceeddings of the 49th IEEE Conference on Decision and Control, 5438–5443.

  34. Felippa, C. A. (2004). Introduction to finite element methods. University of Colorado, Boulder.

    Google Scholar 

  35. Alanis, A. Y., Sanchez, E. N., Ruiz-Velazquez, E., Leon, B. S. (2011). Neural model of blood glucose level for type 1. Proceedings of International Joint Conference on Neural Networks, 2018–2023.

  36. Haykin, S. (2001). Kalman filtering and neural networks. Wiley, New York.

    Book  Google Scholar 

  37. Kosmatopoulos, E. B., Polycarpou, M. M., Christodoulou, M. A., & Ioannou, P. A. (1995). High-order neural network structures for identification of dynamical systems. IEEE Transactions on Neural Networks, 6(2), 422–431.

    Article  Google Scholar 

  38. Ornelas, F., Sanchez, E. N., & Loukianov, A. G. (2009). Discrete-time inverse optimal control for nonlinear systems trajectory tracking. In Proceedings of the 49th IEEE Conference on Decision and Control, San Diego, California, USA, Vol. 1, pp. 923–928.

  39. Bergman, R. N., Ider, Y. Z., Bowden, C. R., & Cobelli, C. (1979). Quantitative estimation of insulin sensitivity. American Journal of Physiology, Endocrinology and Metabolism, 235, 667–677.

    Google Scholar 

  40. Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Orsini-Federici, M., Pieber, T. R., Schaller, H., Schaupp, L., Vering, T., & Wilinska, M. (2004). Non-linear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25(4), 905–920.

    Article  Google Scholar 

  41. Lehmann, E. D., & Deutsch, T. (1992). A physiological model of glucose-insulin interaction in type I diabetes mellitus. Journal on Biomedical Engineering, 14(3), 235–242.

    Article  Google Scholar 

  42. Liu, W., & Tang, F. (2008). Modeling a simplified regulatory system of blood glucose at molecular levels. Journal of Theoretical Biology, 252, 608–620.

    Article  MathSciNet  Google Scholar 

  43. Sanchez, E. N., Alanis, A. Y., & Rico, J. J. (2004). Electric load demand prediction using neural networks trained by Kalman filtering. Proceedings of the IEEE International Joint Conference on Neural Networks.

  44. Berger, M., & Rodbard, D. (1989). Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care, 12(10), 725–736.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the support CONACYT Mexico, through Projects 103191Y and 131678Y. They also thank the very useful comments of the anonymous reviewers, which help to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Y. Alanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leon, B.S., Alanis, A.Y., Sanchez, E.N. et al. Neural inverse optimal control applied to type 1 diabetes mellitus patients. Analog Integr Circ Sig Process 76, 343–352 (2013). https://doi.org/10.1007/s10470-013-0109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0109-8

Keywords

Navigation