Skip to main content
Log in

A full-band UWB common-gate band-pass noise matched g m -boosted series peaked CMOS differential LNA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low-power noise-matched fully-differential common-gate (CG) low noise amplifier (LNA) for ultrawideband receiver operating in the full 3.1–10.6 GHz band. Performance was optimized by employing the transconductance ‘g m ’ boosted CG LNA topology with series peaking along with an input noise matching network. A common source g m -boosting amplifier, in conjunction with an LC T-network, was used to share the bias current with the CG stage. The LNA was demonstrated using a 130 nm IBM CMOS process technology and it consumed 7 mW from a 1 V supply. It exhibited an input return loss (S11) and an output return loss (S22) of −10.5 and −14 dB respectively. In addition, it also achieved a forward power gain (S21) of 14.5 dB and a noise figure between 4.5 and 5.0 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Di Benedetto, M.-G., & Giancola, G. (2004). Understanding ultra wide band radio fundamentals. Columbus: Prentice Hall.

    Google Scholar 

  2. Wood, S., & Aiello, R. (2008). Essentials of UWB. New York: Cambridge University Press.

    Book  Google Scholar 

  3. Di Benedetto, M.-G., Kaiser, T., Molisch, A. F., Oppermann, I., Politano, C., & Porcino, D. (2006). UWB Communication systems: A comprehensive overview. Nasr: Hindawi.

    Book  MATH  Google Scholar 

  4. Allen, B., Dohler, M., Okon, E. E., Malik, W. Q., Brown, A. K., & Edwards, D. J. (2007). Ultra-wideband antennas and propagation for communications, radar and imaging. India: Wiley.

    Google Scholar 

  5. Roberto Aiello, G. (2003) Challenges for ultra-wideband (UWB) CMOS integration, In IEEE MTT-Symposium Digest, June 2003 (Vol. 1, pp. 361–364).

  6. Leenaerts, D., van de Beek, R., Bergervoet, J., Kundur, H., van der Weide, Gd, Kapoor, A., et al. (2009). A 65 nm CMOS inductorless triple band group WiMedia UWB PHY. IEEE Journal of Solid-State Circuits, 44(12), 3499–3510.

    Article  Google Scholar 

  7. ECMA-368 Standard (2005). Retrieved September 03, 2011 from http://www.ecma-international.org/publications/standards/Ecma-368.htm.

  8. Reja, Md M, Moez, K., & Filanovsky, I. (2010). An area-efficient multistage 3.0- to 8.5-GHz CMOS UWB LNA using tunable active inductors. IEEE Transactions on Circuits and Systems. II: Express Briefs, 57(8), 587–591.

    Article  Google Scholar 

  9. Battista, M., Gaubert, J., Egels, M., Bourdel, S., & Barthelemy, H. (2008). High-voltage-gain CMOS LNA for 6–8.5-GHz UWB receivers. IEEE Transactions on Circuits and Systems-II: Express Briefs, 55(8), 713–717.

    Article  Google Scholar 

  10. Gaubert, J., Egels, M., Pannier, Ph, & Bourdel, S. (2005). Design method for broadband CMOS RF LNA. Electronics Letters, 41(7), 383–384.

    Article  Google Scholar 

  11. Yang, H.-Y., Lin, Y.-S., & Chen, C.-C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters, 44(8), 383–384.

    Article  Google Scholar 

  12. Cha, C.-Y. & Lee, S. -G. (2002) A 5.2 GHz LNA in 0.35 μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance. In Proceedings European Solid-State Circuits Conference (pp. 339–342).

  13. Rezaul Hasan, S. M. (2010). Analysis and design of a multi-stage CMOS band-pass low noise pre-amplifier for ultra-wide-band RF receiver. IEEE Transactions on VLSI Systems, 18(4), 638–651.

    Article  Google Scholar 

  14. Tsang, T. K. K., Lin, K.-Y., & El-Gamal, M. N. (2008). Design techniques of CMOS ultra-wideband amplifiers for multistandard communications. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3), 214–218.

    Article  Google Scholar 

  15. Chang, P.-Y., & Hsu, S. S. H. (2010). A compact 0.1–14-GHz ultra-wideband low-noise amplifier in 0.13-um CMOS. IEEE Transactions on Microwave Theory and Techniques, 58(10), 2575–2581.

    Article  Google Scholar 

  16. Zhang, H., Fan, X., & Sinencio, S. (2009). A low-power, linearized, ultra-wideband LNA design technique. IEEE Journal of Solid-State Circuits, 44(2), 320–330.

    Article  Google Scholar 

  17. Weng, R.-M., Liu, C.-Y., & Lin, P.-C. (2010). A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2077–2083.

    Article  Google Scholar 

  18. Zhuo, W., Li, X., Shekhar, S., Embabi, S. H. K., Pineda de Gyvez, J., Allstot, D. J., et al. (2005). A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions on Circuits and Systems-II: Express Briefs, 52(12), 875–879.

    Article  Google Scholar 

  19. Lerdworatawee, J., & Namgoong, W. (2004). Low-noise amplifier design for ultrawideband radio. IEEE Transactions on Circuits and Systems-I: Regular Papers, 51(6), 1075–1087.

    Article  Google Scholar 

  20. Khurram, M., & Hasan, S. M. R. (2011). Novel analysis and optimization of g m -boosted common-gate UWB LNA. Microelectronics Journal, 42(2), 253–264.

    Article  Google Scholar 

  21. Khurram, M., & Hasan, S. M. R. (2011). Series peaked noise matched gm-boosted 3.1–10.6 GHz CG CMOS differential LNA for UWB WiMedia. Electronics Letters, 47(24), 1346–1348.

    Article  Google Scholar 

  22. Lee, Thomas H. (2004). The design of CMOS radio-frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  23. Shaeffer, D. K., & Lee, T. H. (1997). A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE Journal of Solid-State Circuits, 32(5), 745–759.

    Article  Google Scholar 

  24. Shin, H., et al. (2006). Analytical thermal noise model of deep sub-micron MOSFETs. Journal of Semiconductor Technology and Science, 6(3), 206–209.

    Google Scholar 

  25. Scholten, A. J., et al. (2003). Noise modeling for RF CMOS circuit simulation. IEEE Transactions of Electron Devices, 50(3), 618–632.

    Article  MathSciNet  Google Scholar 

  26. Deen, M. J., et al. (2006). High-frequency noise of modern MOSFETs: Compact modeling and measurement issues. IEEE Transactions of Electron Devices, 53(9), 2062–2081.

    Article  Google Scholar 

  27. Tang, S.-K., Pun, K.-P., Choy, C.-S., Chan, C.-F., & Leung, K. N. (2008). A fully-differential band-selective low-noise amplifier for MB-OFDM UWB receivers. IEEE Transactions on Circuits and Systems: Express Briefs, 55(7), 653–657.

    Article  Google Scholar 

  28. Khurram, M., & Hasan, R. (2012). A 3–5 GHz current-reuse g m -boosted CG LNA for ultrawideband in 130 nm CMOS. IEEE Transactions on Very Large Scale Integration Systems, 20(3), 400–409.

    Article  Google Scholar 

  29. Chang, J.-F., & Lin, Y.-S. (2011). 0.99 mW 3–10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique. Electronic Letters, 47(11), 658–659.

    Article  Google Scholar 

  30. Park, B., Choi, S., & Hong, S. (2010). A low-noise amplifier with tunable interference rejection for 3.1–10.6-GHz UWB systems. IEEE Microwave Wireless Component Letters, 20(1), 40–42.

    Article  Google Scholar 

  31. Wu, C.-Y., Lo, Y.-K., & Chen, M.-C. (2009). A 3–10 GHz CMOS UWB low-noise amplifier with ESD protection circuits. IEEE Microwave and Wireless Component Letters, 19(11), 737–739.

    Article  Google Scholar 

  32. Pepe, D., & Zito, D. (2009). 22.7-dB gain-19.7-dBm ICP 1 dB UWB CMOS LNA. IEEE Transactions on Circuits and Systems-II, Express Briefs, 56(9), 689–693.

    Article  Google Scholar 

  33. Sapone, G., & Palmisano, G. (2011). A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory and Techniques, 59(3), 678–686.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Rezaul Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khurram, M., Rezaul Hasan, S.M. A full-band UWB common-gate band-pass noise matched g m -boosted series peaked CMOS differential LNA. Analog Integr Circ Sig Process 76, 47–60 (2013). https://doi.org/10.1007/s10470-013-0085-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0085-z

Keywords

Navigation