Skip to main content
Log in

A broadband linear-in-decibel variable gain amplifier with low gain error

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new circuit architecture for broadband digitally controlled variable gain amplifier (VGA) is introduced in this paper. The gain of the VGA is controlled precisely by using a resistor ladder attenuator and a closed-loop fine gain control block together. The bandwidth of the VGA is extended by applying a compensation technique in the fine gain control block. Implemented in 0.13-μm CMOS technology, the proposed VGA demonstrates a decibel-linear gain range of 24 dB (0–24 dB) with a gain step of 0.1 dB, a gain error <0.08 dB, a maximum input-referred third-order intercept point (IIP3) of 22.8 dBm, and a 3-dB bandwidth of 600 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bloodworth, B. E., Siniscalchi, P. P., De Veirman, G. A, Sr, Jezdic, A., Pierson, R., & Sundararaman, R. (1999). A 450-Mb/s analog front end for PRML read channels. IEEE Journal of Solid-State Circuits, 34(11), 1661–1675.

    Article  Google Scholar 

  2. Hsu, C.-C., & Wu, J.-T. (2003). A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier. IEEE J Solid-State Circuits, 38(10), 1663–1670.

    Article  Google Scholar 

  3. Yoo, S.-J., Ravindran, A., & Ismail, M. (2004). A low voltage CMOS transresistance-based variable gain amplifier. IEEE International Symposium on Circuits and Systems, 1, 809–812.

    Google Scholar 

  4. Calvo, B., Celma, S., Aznar, F., & Alegre, J. P. (2007). Low-voltage CMOS programmable gain amplifier for UHF applications. Electronics Letters, 43(20), 1087–1088.

    Article  Google Scholar 

  5. Duong, Q.-H., Le, Q., Kim, C.-W., & Lee, S.-G. (2006). A 95-dB linear low-power variable gain amplifier. IEEE Transanctions on Circuits and Systems I Regular Paper, 53(8), 1648–1657.

    Article  Google Scholar 

  6. Nguyen, H.-H., Duong, Q.-H., & Lee, S.-G. (2008). 84 dB 5.2 mA digitally controlled variable gain amplifier. Electronics Letters, 44(5), 344–345.

    Article  Google Scholar 

  7. Calvo, B., Celma, S., Martinez, P. A. & Sanz, M.T. (2006). A 1.8 V-100 MHz CMOS programmable gain amplifier. IEEE International Symposium on Circuits and Systems, (pp. 1555–1558).

  8. Gilbert, B. (1991). Variable gain amplifier controlled by an analog signal and having a large dynamic range. U.S. Patent 5077541.

  9. Kwon, I., & Lee, K. (2007). An accurate behavioral model for RF MOSFET linearity analysis. IEEE Microwave and Wireless Components Letters, 17(12), 897–899.

    Article  MathSciNet  Google Scholar 

  10. Nguyen, H.-H., Nguyen, H.-N., Lee, J.-S., & Lee, S.-G. (2009). A binary-weighted switching and reconfiguration-based programmable gain amplifier. IEEE Transactions on Circuits and Systems II Express Briefs, 56(9), 699–703.

    Article  Google Scholar 

  11. Lakshmikumar, K., Hadaway, R., & Copeland, M. (1986). Characterization and modeling of mismatch in MOS transistors for precision analog design. IEEE Journal of Solid-State Circuits, SC-21, 1057–1066.

    Article  Google Scholar 

  12. Bastos, J., Steyaert, M., & Sansen, W. (1996). A High Yield 12-bit 250-MS/s CMOS D/A Converter. IEEE Custom Integrated Circuits Conference, (pp. 431–434).

  13. Pelgrom, M. J. M., Duinmaijer, A. C. J., & Welbers, A. P. G. (1989). Matching properties of MOS transistors. IEEE Journal of Solid-State Circuits, 24, 1433–1439.

    Article  Google Scholar 

  14. Mostafa, M. A. I., Embabi, S. H. K., & Elmala, M. (2003). A 60-dB 246-MHz CMOS variable gain amplifier for subsampling GSM receivers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(5), 835–838.

    Article  Google Scholar 

  15. Lee, H-C., Lin, C-C., & Wang, C-K. (2006) A 290 MHz 50 dB programmable gain amplifier for wideband communications. IEEE Asian Solid-State Circuits Conference, (pp. 379–382).

  16. Nguyen, H.-H., Duong, Q.-H., Le, H.-B., Lee, J.-S., & Lee, S.-G. (2008). Low-power 42 dB-linear single-stage digitally controlled variable gain amplifier. Electronics Letters, 44(13), 780–782.

    Article  Google Scholar 

  17. Nguyen, H-H., Nguyen, H-N., Lee, J. & Lee, S-G. (2010) A high-linearity low-noise reconfiguration-based programmable gain amplifier, IEEE European Solid-State Circuits Conference, (pp. 166–169).

  18. Harpe, P., Zhou, C., Philips, K. & Groot, H. (2011). A 1.6 mW 0.5 GHz open-loop VGA with fast startup and offset calibration for UWB radios. IEEE European Solid-State Circuits Conference, (pp. 103–106).

Download references

Acknowledgments

The authors wish to acknowledge the sponsors from LSI Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, N., Fang, F., Hong, ZL. et al. A broadband linear-in-decibel variable gain amplifier with low gain error. Analog Integr Circ Sig Process 76, 73–80 (2013). https://doi.org/10.1007/s10470-013-0079-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0079-x

Keywords

Navigation