Skip to main content
Log in

A low phase noise PLL using Vackar VCO and a wide-locking range tunable divider for V-band signal generation in 65-nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low phase noise integer-N phase-locked loop (PLL) for V-band signal generation. To enhance the frequency stability, we use a new class of Vackar voltage-controlled oscillator (VCO) in the PLL. The Vackar VCO achieves a low phase noise performance by effectively suppressing the AM-PM conversion. To properly align the locking range with the output of the VCO, a divider with wide locking range is realized by the current-mode logic (CML) D-flip-flops with tunable load. For spur reduction, an enhanced charge-pump structure is used to reject transient current glitches. With good static and dynamic current matching achieved in the charge pump, the reference spur is suppressed down to −50 dBc. The designed PLL is implemented in a 65 nm RFCMOS process, and the measurement demonstrates a low phase noise signal up to 17 GHz. The in-band phase noise (at 1 MHz offset) and out-band phase noise (at 50 MHz offset) are −103.6 and −126.8 dBc/Hz, respectively. The PLL consumes 50.7 mW and occupies a chip area of 0.9 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kim, J., Kim, J. K., Lee, B. J., Kim, N., Jeong, D. K., & Kim, W. (2006). A 20-GHz phase-locked loop for 40-Gb/s serializing transmitter in 0.13-μm CMOS. IEEE Journal of Solid-State Circuits, 41(4), 899–908.

    Article  Google Scholar 

  2. Lee, J., Mingchung, L., & Huaide, W. (2008). A 75-GHz phase-locked loop in 90-nm CMOS technology. IEEE Journal of Solid-State Circuits, 43(6), 1414–1426.

    Article  Google Scholar 

  3. Cao, C., Ding, Y., & O, K. K. (2007). A 50-GHz phase-locked loop in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 42, 1649–1656.

    Article  Google Scholar 

  4. Voinigescu, S. P., Aroca, R., Dickson, T. O., Nicolson, S. T., Chalvatzis, T., Chevalier, P., Garcia, P., Garnier, C. & Sautreuil, B. (2007). Towards a sub-2.5 V, 100-Gb/s serial transceiver. In: IEEE Custom Integrated Circuits Conference (pp 471–478).

  5. Plouchart, J. O., Kim, J., Recoules, H., Zamdmer, N., Yue Tan, Sherony, M., Ray, A., & Wagner L. (2003, June). A power-efficient 33 GHz 2:1 static frequency divider in 0.12-μm SOI CMOS. In: Proc. IEEE Radio Frequency Integrated Circuits Symposium, (pp. 329–332).

  6. Knapp, H., Wohlmuth, H.-D., Wurzer, M., & Rest M. (2002, Feb). 25 GHz static frequency divider and 25 Gb/s multiplexer in 0.12 μm CMOS. In: IEEE ISSCC Dig. Tech. Papers (pp. 302–468).

  7. Lee, J., & Razavi, B. (2003, June). A 40-GHz frequency divider in 0.18-μm CMOS technology. In: Symposium on VLSI Circuits Digest of Technical Papers (pp. 259–262).

  8. Nguyen, T.-N., & Lee, J.-W. (2010). Low phase noise differential Vackar VCO in 0.18 μm CMOS process technology. IEEE Microwave Wireless Components Letter, 20(2), 88–90.

    Article  Google Scholar 

  9. Rhee, W. (1999, July). Design of high-performance CMOS charge pumps in phase-locked loops. In: IEEE International Symposium on Circuits and Systems (pp. 545–548).

  10. Lau, C. Y., & Perrott, M. H. (2003, June). Fractional-N frequency synthesizer design at the transfer function level using a direct closed loop realization algorithm. In: Design Automation Conference (pp. 526–531).

  11. Perrott, M. H. http://www-mtl.mit.edu/researchgroups/perrottgroup/HSCS/cppsim3.html. Accessed 3 July 2012.

  12. Vackar, J. (1949, December). LC oscillators and their frequency stability. Tesla Technical Reports (pp. 1–9).

  13. Nguyen, T.-N., & Lee, J.-W. (2012). A K-band CMOS differential Vackar VCO with the gate inductive feedback. IEEE Transactions on Circuit and Systems-II, 59(5), 257–261.

    Article  Google Scholar 

  14. Plouchart, J.O., Kim, J., Karam, V., Trzcinski, R., & Gross, J. (2006, Feb). Performance variations of a 66 GHz static CML divider in 90 nm CMOS. IEEE ISSCC Dig. Tech. Papers (pp. 2142–2151).

  15. Mijuskovic, D., Bayer, M., Chomicz, T., Garg, N., James, F., McEntarfer, P., et al. (1994). Cell-based fully integrated CMOS frequency synthesizers. IEEE Journal of Solid-State Circuits, 29(3), 271–279.

    Article  Google Scholar 

  16. Gardner, F. M. (1980). Charge-pump phase-lock loops. IEEE Transactions on Communications, 28(11), 1849–1858.

    Article  Google Scholar 

  17. Lee, J.-S., Keel, M.-S., Lim, S.-I., & Kim, S. (2000). Charge pump with perfect current matching characteristics in phase-locked loops. Electronics Letters, 23(36), 1907–1908.

    Article  Google Scholar 

  18. Rhee, W., Song, B. S., & Ali, A. (2000). A 1.1-GHz CMOS fractional-N frequency synthesizer with a 3-b third-order ΔΣ modulator. IEEE Journal of Solid-State Circuits, 35(10), 1453–1460.

    Article  Google Scholar 

  19. Ding, Y., & O, K. K. (2007). A 21-GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-nm CMOS. IEEE Journal of Solid-State Circuits, 42(6), 1300–1309.

    Article  Google Scholar 

  20. Ding Y., & O, K. K. (2007, June). A 21-GHz fractional-N synthesizer in 130-nm CMOS. Symposium on VLSI Circuits Digest of Technical Papers (pp. 264–265).

  21. Ng, A. W. L., Leung, G. C. T., Kwok, K.-C., Leung, L. L. K., & Luong, H. C. (2006). A 1-V 24-GHz 17.5-mW phase-locked loop in a 0.18 μm CMOS process. IEEE Journal of Solid-State Circuits, 41(6), 1236–1244.

    Article  Google Scholar 

  22. Saavedra, C. E. (2011). Frequency multiplier design techniques and applications in nanometer CMOS and GaAs: RF, high-speed and high-precision circuits (pp. 163–184). New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Basic Research Program through the National Research Foundation of Korea (No. 2012-001327) and in part by the ETRI SW-SoC R&BD Center, Human Resource Development Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, L.T., Chau, TT. & Lee, JW. A low phase noise PLL using Vackar VCO and a wide-locking range tunable divider for V-band signal generation in 65-nm CMOS. Analog Integr Circ Sig Process 76, 91–102 (2013). https://doi.org/10.1007/s10470-013-0075-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0075-1

Keywords

Navigation