Skip to main content
Log in

Gate-leakage compensation scheme for programmable SI-DAC of ΣΔ modulator in deep sub-micron

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A gate-leakage compensation scheme is proposed to solve the gate-leakage current issue caused by large-size current-source transistors in multi-bit switched-current (SI) DACs of the continuous-time ΣΔ modulator in deep sub-micron process without extra power consumption. To cover wide current range due to variable coefficients in different modes, the programmable SI-DAC architecture with 2-bit digital controlled unit cells is proposed. Implemented in 65 nm CMOS, the simulated results verify that the proposed scheme solves the gate-leakage issue and the modulator achieves tremendously high performance of 84.5 dB SQNDR and 94.6 dB SFDR with almost 14 and 19 dB improvement in SQNDR and SFDR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Crombez, P., Van der Plas, G., Steyaert, M. S. J., & Craninckx, J. (2010). A single-bit 500 KHz–10 MHz multimode power-performance scalable 83-to-67 dB DR CT ΔΣ for SDR in 90 nm digital CMOS. IEEE Journal of Solid-State Circuits, 45(6), 1159–1171.

    Article  Google Scholar 

  2. Mitteregger, G., Ebner, C., Mechnig, S., Blon, T., Holuigue, C., & Romani, E. (2006). A 20-mW 640-MHz CMOS continuous-time ΣΔ ADC with 20-MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB. IEEE Journal of Solid-State Circuits, 41(12), 2641–2649.

    Article  Google Scholar 

  3. Kauffman, J. G., Witte, P., Becker, J., & Ortmanns, M. (2011). An 8.5 mW continuous-time ΔΣ modulator with 25 MHz Bandwidth using digital background DAC linearization to achieve 63.5 dB SNDR and 81 dB SFDR. IEEE Journal of Solid-State Circuits, 46(12), 2869–2880.

    Article  Google Scholar 

  4. Chopp, P. M., & Hamoui, A. A. (2009). Analysis of clock-jitter effects in continuous-time ΔΣ modulators using discrete-time models. IEEE Transactions on Circuits and Systems-I: Regular Papers, 56(6), 1134–1145.

    Article  MathSciNet  Google Scholar 

  5. Roy, K., Mukhopadhyay, S., & Mahmoodi-Meimand, H. (2003). Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE, 91(2), 305–327.

    Article  Google Scholar 

  6. Annema, A., Nauta, B., Van Langevelde, R., & Tuinhout, H. (2005). Analog circuits in ultra-deep-submicron CMOS. IEEE Journal of Solid-State Circuits, 40(1), 132–143.

    Article  Google Scholar 

  7. Wang, R., Wen, X., Azadet, K., Li, C., & Chen, J. (2012). A power-optimized reconfigurable CT ΔΣ modulator in 65 nm CMOS. IEEE International Symposium on Circuits and Systems, p. 305–308.

  8. Van den Bosch, A., Steyaert, M., & Sansen, W. (2000). An accurate statistical yield model for CMOS current-steering D/A converters. IEEE International Symposium on Circuits and Systems, p. 105–108.

  9. Razavi, V. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science and Technology Major Projects of China (Grant 2012ZX03004007) and in part by the National Natural Science Foundation of China (Grant 61020106006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Chi, B. & Wang, Z. Gate-leakage compensation scheme for programmable SI-DAC of ΣΔ modulator in deep sub-micron. Analog Integr Circ Sig Process 76, 155–160 (2013). https://doi.org/10.1007/s10470-013-0073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0073-3

Keywords

Navigation