Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 2, pp 345–353 | Cite as

Operating-point driven formulation for analog computer-aided design

  • Ivick Guerra-Gómez
  • Trent McConaghy
  • Esteban Tlelo-Cuautle
Article

Abstract

In designing analog integrated circuits, the step of selecting device sizes and biases is crucial to enhance the final performance, power, and yield of the circuits. In manual design flows, the designer first selects bias voltage and branch current values, and then converts to widths and lengths via first-order equations. This is the operating-point driven (OP) formulation. Using OP makes it easy for the designer to maintain insight of the effect of design variables (voltage, currents) on performance, in addition to simplifying the sizing problem. In contrast to manual, automated sizing approaches in the computer-aided design (CAD) literature predominantly manipulate device sizes directly. While simpler from a CAD perspective, the direct-sizing approach misses the benefits of OP—insight and a simpler problem that would lead to faster convergence and better results. We believe that the OP formulation is underused, because of lack of familiarity, inconvenience, and underappreciation of its benefits. This investigation aims to resolve that and help to improve CAD practice, by reviewing the literature on OP that has been accumulated over the decades, and describing the variants, applications, and benefits of OP.

Keywords

Operating-point driven formulation Analog CAD Biasing Sizing 

References

  1. 1.
    Aggarwal, V. & O’Reilly, U. M. (2006). Design of posynomial models for mosfets: Symbolic regression using genetic algorithms. In: R. L. Riolo, T. Soule, & B. Worzel (Eds.), Genetic programming theory and practice IV, Genetic and evolutionary computation, vol. 5, chap. 7. Springer. http://people.csail.mit.edu/unamay/publications-dir/gptp06.pdf.
  2. 2.
    Antreich, K., Eckmueller, J., Graeb, H., Pronath, M., Schenkel, F., Schwencker, R., & Zizala, S. (2000). WiCkeD: Analog circuit synthesis incorporating mismatch. Proceedings of the IEEE Custom Integrated Circuits Conference pp. 511–514.Google Scholar
  3. 3.
    Binkley, D., Hopper, C., Tucker, S., Moss, B., Rochelle, J., & Foty, D. (2003). A CAD methodology for optimizing transistor current and sizing in analog CMOS design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(2), 225–237.CrossRefGoogle Scholar
  4. 4.
    Boos, V., Nowak, J., Sylvester, M., Henker, S., Höppner, S., Grimm, H., Krausse, D., & Sommer, R. (2011). Strategies for initial sizing and operating point analysis of analog circuits. Design, Automation and Test in Europe Conference and Exhibition pp. 1–3.Google Scholar
  5. 5.
    Chang, H. (1997). A top-down constraint-driven design methodology for analog integrated circuits. Boston: Kluwer Academic. http://books.google.com/books?id=-C1CzmaxD-wC.
  6. 6.
    Daems, W., Gielen, G., & Sansen, W. (2003). Simulation-based generation of posynomial performance models for the sizing of analog integrated circuits. IEEE Transaction on CAD of Integrated Circuits and Systems, 22(5), 517–534.CrossRefGoogle Scholar
  7. 7.
    De Bernardinis, F., Nuzzo, P., & Sangiovanni Vincentelli, A. (2005). Mixed signal design space exploration through analog platforms. Design Automation Conference pp. 875–880.Google Scholar
  8. 8.
    De Bernardinis, F. & Sangiovanni Vincentelli, A. (2005). Efficient analog platform characterization through analog constraint graphs. International Conference on Computer-Aided Design pp. 415–421.Google Scholar
  9. 9.
    De Smedt, B., & Gielen, G. (2003). WATSON: design space boundary exploration and model generation for analog and RFIC design. Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(2), 213–224.CrossRefGoogle Scholar
  10. 10.
    Degrauwe, M., Nys, O., Dijkstra, E., Rijmenants, J., Bitz, S., Goffart, B., Vittoz, E., Cserveny, S., Meixenberger, C., van der Stappen, G.,& Oguey, H. (1987). IDAC: an interactive design tool for analog CMOS circuits. IEEE Journal of Solid-State Circuits, 22(6), 1106–1116.CrossRefGoogle Scholar
  11. 11.
    Ding, M. & Vemuri, R. (2005). A combined feasibility and performance macromodel for analog circuits. Design Automation Conference pp. 63–68.Google Scholar
  12. 12.
    Duarte-Villaseñor, M. A., Tlelo-Cuautle, E., & Gerardo de la Fraga, L. (2011). Binary genetic encoding for the synthesis of mixed-mode circuit topologies. Circuits, Systems and Signal Processing doi:10.1007/s00.034-011-9353-2.
  13. 13.
    Eeckelaert, T., McConaghy, T., & Gielen, G. (2005). Efficient multiobjective synthesis of analog circuits using hierarchical pareto-optimal performance hypersurfaces. Design, Automation and Test in Europe, 2, 1070–1075.CrossRefGoogle Scholar
  14. 14.
    Flandre, D., Viviani, A., Eggermont, J. P., Gentinne, B., & Jespers, P. (1997). Improved synthesis of gain-boosted regulated-cascode CMOS stages using symbolic analysis and gm/ID methodology. IEEE Journal of Solid-State Circuits, 32(7), 1006–1012.CrossRefGoogle Scholar
  15. 15.
    Girardi, A., Cortes, F., & Bampi, S. (2006) A tool for automatic design of analog circuits based on g m/ I D methodology. IEEE International Symposium on Circuits and Systems.Google Scholar
  16. 16.
    Hammouda, S., Dessouky, M., Tawfik, M., & Badawy, W. (2004). A fully automated approach for analog circuit reuse. International Workshop on System-on-Chip for Real-Time Applications, pp. 237–240.Google Scholar
  17. 17.
    Hammouda, S., Said, H., Dessouky, M., Tawfik, M., Nguyen, Q., Badawy, W., Abbas, H., & Shahein, H. (2006). Chameleon art: A non-optimization based analog design migration framework. Proceedings of the Design Automation Conference pp. 885 –888.Google Scholar
  18. 18.
    Hashemian, R. (2012). Application of fixator-norator pairs in designing active loads and current mirrors in analog integrated circuits. IEEE Trans on Very Large Scale Integration (VLSI) Systems doi:10.1109/TVLSI.2011.2172229.
  19. 19.
    Heikkilau, P., Valtonen, M., & Pohjonen, H. (1989). Automated dimensioning of MOS transistors without using topology-specific explicit formulas. International Symposium on Circuits and Systems, 2, 1131–1134.CrossRefGoogle Scholar
  20. 20.
    Iskander, R., Dessouky, M., Aly, M., Magdy, M., & Hassan, N. (2003). Synthesis of CMOS analog cells using AMIGO. Design, Automation and Test in Europe Conference and Exhibition pp. 297–302.Google Scholar
  21. 21.
    Iskander, R., Galayko, D., Louerat, M. M., & Kaiser, A. (2007). Knowledge-aware synthesis using hierarchical graph-based sizing and biasing. IEEE Northeast Workshop on Circuits and Systems pp. 984–987.Google Scholar
  22. 22.
    Iskander, R., Loüerat, M. M., & Kaiser, A. (2012). Hierarchical sizing and biasing of analog firm intellectual properties. Integration, the VLSI Journal pp. 1–17. doi:10.1016/j.vlsi.2012.01.001.
  23. 23.
    Iskander, R., Loüerat, M. M., & Kaiser, A. (2008). Automatic dc operating point computation and design plan generation for analog IPs. Analog Integrated Circuits and Signal Processing, 56(1-2), 93–105.CrossRefGoogle Scholar
  24. 24.
    Javid, F., Iskander, R., Durbin, F., & Louerat, M. (2012). Analog circuits sizing using the fixed point iteration algorithm with transistor compact models. IEEE International Conference Mixed Design of Integrated Circuits and Systems pp. 45–50.Google Scholar
  25. 25.
    Javid, F., Iskander, R., & Louerat, M. M. (2009). Simulation-based hierarchical sizing and biasing of analog firm IPs. Behavioral Modeling and Simulation Workshop pp. 43–48.Google Scholar
  26. 26.
    Koh, H., Sequin, C., & Gray, P. (1990). OPASYN: a compiler for CMOS operational amplifiers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9(2), 113–125.CrossRefGoogle Scholar
  27. 27.
    Kruiskamp, W. & Leenaerts, D. (1995). DARWIN: CMOS opamp synthesis by means of a genetic algorithm. Conference on Design Automation pp. 433–438.Google Scholar
  28. 28.
    Leyn, F., Gielen, G., & Sansen, W. (1998). An efficient DC root solving algorithm with guaranteed convergence for analog integrated CMOS circuits. International Conference on Computer-Aided Design, pp. 304–307.Google Scholar
  29. 29.
    Liu, B., Pak, M., Zheng, X., & Gielen, G. (2011). A novel operating-point driven method for the sizing of analog IC. IEEE International Symposium on Circuits and Systems, pp. 781–784.Google Scholar
  30. 30.
    del Mar Hershenson, M., Boyd, S., & Lee, T. (1998). GPCAD: A tool for CMOS op-amp synthesis. Proceedings of the 1998 IEEE/ACM international conference on Computer-aided design, pp. 296–303. ACM http://doi.acm.org/10.1145/288548.288628.
  31. 31.
    Massier, T., Graeb, H., & Schlichtmann, U. (2008). The sizing rules method for CMOS and bipolar analog integrated circuit synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(12), 2209–2222.CrossRefGoogle Scholar
  32. 32.
    Maulik, P., Carley, L., & Rutenbar, R. (1995). Integer programming based topology selection of cell-level analog circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(4), 401–412.CrossRefGoogle Scholar
  33. 33.
    McConaghy, T. & Gielen, G. (2009). CAFFEINE: template-free symbolic model generation of analog circuits via canonical form functions and genetic programming. Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(8), 1162–1175.CrossRefGoogle Scholar
  34. 34.
    McConaghy, T., Palmers, P., Steyaert, M., & Gielen, G. (2009). Variation-aware structural synthesis of analog circuits via hierarchical building blocks and structural homotopy. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(9), 1281–1294.CrossRefGoogle Scholar
  35. 35.
    Medeiro, F., Fernández, F., Domínguez-Castro, R., & Rodríguez-Vázquez, A. (1994) A statistical optimization-based approach for automated sizing of analog cells. International Conference on Computer-Aided Design pp. 594–597.Google Scholar
  36. 36.
    Ochotta, E., Rutenbar, R., & Carley, L. (1996). Synthesis of high-performance analog circuits in ASTRWOBLX. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(3), 273–294.CrossRefGoogle Scholar
  37. 37.
    Phelps, R., Krasnicki, M., Rutenbar, R., Carley, L., & Hellums, J. (2000). Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 19(6), 703–717.CrossRefGoogle Scholar
  38. 38.
    Sansen, W. (2006). Analog design essentials. New York: Springer.Google Scholar
  39. 39.
    Savio, A., Colalongo, L., Kovacs-Vajna, Z., & Quarantelli, M. (2004). Scaling rules and parameter tuning procedure for analog design reuse in technology migration. International Symposium on Circuits and Systems, vol. 5, pp. 117–120Google Scholar
  40. 40.
    Savio, A., Colalongo, L., Quarantelli, M., & Kovacs-Vajna, Z. M. (2006). Automatic scaling procedures for analog design reuse. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(12), 2539–2547.CrossRefGoogle Scholar
  41. 41.
    Sheinman, B., Ramm, D., & Nachmany, D. (2008). A comprehensive flow for transfer of designs between technologies. Proceedings of the International Conference on Microwaves, Communications, Antennas and Electronic Systems, pp. 1–7.Google Scholar
  42. 42.
    Sheu, B., Fung, A., & Lai, Y. N. (1988). A knowledge-based approach to analog IC design. Transactions on Circuits and Systems, 35(2), 256–258.CrossRefGoogle Scholar
  43. 43.
    Silveira, F., Flandre, D., & Jespers, P. (1996). A g m/I D Based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA. IEEE Journal of Solid-State Circuits, 31(9), 1314–1319.CrossRefGoogle Scholar
  44. 44.
    Stefanovic, D., Kayal, M., & Pastre, M. (2005). PAD: A New Interactive Knowledge-Based Analog Design Approach. Analog Integrated Circuits and Signal Processing, 42(3), 291–299.CrossRefGoogle Scholar
  45. 45.
    Tadeusiewicz, M., & Halgas, S. (2011). A contraction method for locating all the dc solutions of circuits containing bipolar transistors. Circuits, Systems and Signal Processing pp. doi:10.1007/s00.034-011-9362-1.
  46. 46.
    Torres-Munoz, D., & Tlelo-Cuautle, E. (2005). Automatic biasing and sizing of CMOS analog integrated circuits. Midwest Symposium on Circuits and Systems, 1, 915–918.Google Scholar
  47. 47.
    Toumazou, C., Makris, C., & Berrah, C. (1990). ISAID-a methodology for automated analog IC design. International Symposium on Circuits and Systems, 1, 531–535.Google Scholar
  48. 48.
    Yang, X., Xin, L., Kan-Lin, H., Boyd, S., & Nausieda, I. (2005). OPERA: Optimization with ellipsoidal uncertainty for robust analog IC design. Design Automation Conference pp. 632–637.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ivick Guerra-Gómez
    • 1
  • Trent McConaghy
    • 2
  • Esteban Tlelo-Cuautle
    • 3
  1. 1.SEMTECH-Snowbush Mexico Design CenterMexicoMexico
  2. 2.Solido Design AutomationSaskatoonCanada
  3. 3.INAOETonantzintlaMexico

Personalised recommendations