Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 2, pp 439–451 | Cite as

Sliding mode audio class-D amplifier for portable devices

  • Gael Pillonnet
  • Remy Cellier
  • Angelo Nagari
  • Philippe Lombard
  • Nacer Abouchi
Article

Abstract

Audio class-D amplifiers are widely used in industrial and consumer portable electronic devices, such as mobile phones, thanks to their high efficiency. However, these amplifiers have a limited linearity due to their switching behavior and also a limited control bandwidth. To overcome these major drawbacks, this paper introduces a self-oscillating control technique based on the sliding mode theory which combines a large control bandwidth and a spread spectrum technique. A high power supply rejection, which is a crucial parameter in modules directly connected to a noisy battery, has also been achieved by introducing a variable hysteresis window. Theoretical analysis, behavioral and electrical simulations are discussed in detail in this paper. An integrated circuit using 0.13 μm CMOS process has been realized focused on mobile phone applications (0.8 W, 3.6 V and 8 Ω). The audio amplifier achieves 97 dB(A) signal-to-noise ratio, 0.02 % harmonic distortion and up to 80 dB of power supply rejection. The die area is smaller than 0.4 mm2 while keeping more than 90 % efficiency at 1 W.

Keywords

Switching audio amplifier Class D Self-oscillating Sliding mode control 

References

  1. 1.
    Nielsen, K. (1998). Linearity and efficiency performance of switching audio power amplifier output stages: A fundamental analysis. In 105th AES convention. Paper number 4838. Copenhagen: AES.Google Scholar
  2. 2.
    Nagari, A. (2011). Tutorial review: audio amplifiers in mobile platforms. In Proceedings of Analog Integrated Circuits and Signal Processing. Croatia: IEEE.Google Scholar
  3. 3.
    Pietro, A., Flemming, N., & Lars, R. (2005). Time domain analysis of open loop distortion in class D amplifier output stages. In 27th International AES conference (pp. 3–4). Hillerød: AES.Google Scholar
  4. 4.
    Lau, W. H., & Chung, S. H. (1999). Analytical technique for calculating the output harmonics of an H-bridge inverter with dead time. IEEE Transactions on Fundamental Theory and Applications, 46(5), 617–627.CrossRefGoogle Scholar
  5. 5.
    Kao, C. H., Tsai, P. Y., Lin, W. P., & Chuang, Y. J. (2008). A switching power amplifier with feedback for improving total harmonic distortion. Proceedings of Analog Integrated Circuits and Signal Processing, 55(3), 205–212.CrossRefGoogle Scholar
  6. 6.
    Guilherme, D., Guilherme, J., & Horta, N. (2011). Automatic topology selection and sizing of class-D loop-filters for minimizing distortion based on an evolutionary optimization kernel. Proceedings of Analog Integrated Circuits and Signal Processing, 66(1) 49–59.Google Scholar
  7. 7.
    Gaalaas, E., Liu, B. Y., Nishimura, N., & Adams, R. (2005). Integrated stereo ΔΣ class D amplifier. IEEE Journal of Solid-State Circuits, 40(12), 2388–2397.CrossRefGoogle Scholar
  8. 8.
    Lee, J., Copani, T., Mayhugh, T. Jr., Aravind, B., Kiaei, S. & Bakkaloglu, B. (2011). A 280 mW, 0.07% THD + N class-D audio amplifier using a frequency-domain quantizer. Proceedings of Analog Integrated Circuits and Signal Processing, 72(1) 173–186.Google Scholar
  9. 9.
    Huffenus, A., Pillonnet, G., Abouchi, N., Goutti, F., Rabary, V. & Specq, C. (2010). A phase-shift self-oscillating stereo class-D amplifier for battery-powered applications. In IEEE International Symposium of Circuits and Systems (pp. 769–772). Paris: ISCAS.Google Scholar
  10. 10.
    Soo-Hyoung, L., Jae-Young, S., & Ho-Young, L. (2004). A 2 W 92% efficiency and 0.01% THD + N class-D audio power amplifier for mobile applications, based on the novel SCOM architecture. Proceedings of the IEEE Custom Integrated Circuits Conference, 46, 291–294.Google Scholar
  11. 11.
    Midya, P., Roeckner, B., & Paulo, T. (2006). High performance digital feedback for PWM digital audio amplifiers. In 121th AES convention, paper number 6862. Ilmenau: AES.Google Scholar
  12. 12.
    Biallais, A., de Buys, F., de Saint-Moulin, R., Dooper, L., Putzeys, B., Reefman, D., Rutten, R., Tol, J., & van den Boom, J. (2006). A digital class D amplifier with power supply correction. In 121th AES convention, paper number 6860. San Francisco: AES.Google Scholar
  13. 13.
    Ge, T., Tan, M. T., & Chang, J. S. (2005). Design and analysis of a micropower low-voltage bang–bang control class D amplifier. IEEE International Symposium on Circuits and Systems, 1, 224–227.Google Scholar
  14. 14.
    Rojas-Gonzalez, M. A., & Sanchez-Sinencio, E. (2007). Design of class D audio amplifier IC using sliding mode control and negative feedback. IEEE Transaction on Consumer Electronics, 53(2), 209–217.Google Scholar
  15. 15.
    Rojas-Gonzalez, M. A., & Sanchez-Sinencio, E. (2009). Low power high efficiency class D audio amplifiers. IEEE Journal of Solid-State Circuit, 44(12), 3272–3284.CrossRefGoogle Scholar
  16. 16.
    Pillonnet, G., Cellier, R., Abouchi, N. & Nagari, A. (2008). An integrated class D amplifier based on sliding mode control. In IEEE Integrated Circuit Design and Technology and Tutorial ICICDT (pp. 117–120). Austin: IEEE.Google Scholar
  17. 17.
    Pillonnet, G., Cellier, R., Abouchi, N., & Nagari, A. (2008). A topological comparison of PWM and hysteresis control in switching audio amplifiers. In IEEE Asia Pacific Conference on Circuits and Systems APCCAS (pp. 668–671). Macao : IEEE.Google Scholar
  18. 18.
    Pillonnet, G., & Cellier, R. (2011). Switching amplifier. US Patent Number 7,961,047.Google Scholar
  19. 19.
    Berkhout, M. (2009). Audio class D amplifiers in mobile application. In IEEE International Symposium on Circuit and Systems (pp. 1169–1172). Taipei: ISCAS.Google Scholar
  20. 20.
    Choi, Y., Tak, W., Yoon, Y., Roh, J., Kwon, S., & Koh, J. (2012). A 0.018% THD + N, 88-dB PSRR PWM class-D amplifier for direct battery hookup. IEEE Journal of Solid-State Circuits, 47(2), 454–463.CrossRefGoogle Scholar
  21. 21.
    Torres, J., Colli-Menchi, A., Rojas-González, M. A., & Sánchez-Sinencio, E. (2011). A low-power high-PSRR clock-free current-controlled class-D audio amplifier. IEEE Journal of Solid State Circuits, 46(7), 1553–1561.CrossRefGoogle Scholar
  22. 22.
    Samala, S., Mishra, V., & Chakravarthi, K. C. (2010). 45 nm CMOS 8 Ω class D audio driver with 79% efficiency and 100 dB SNR. In IEEE International Symposium on Solid-State Circuits Digest of Technicla Papers (pp. 86–87). Paris: IEEE.Google Scholar
  23. 23.
    Teplechuk, M., Gribben, T., & Amadi, C. (2011). Filterless integrated class-D audio amplifier achieving 0.0012% THD + N and 96 dB PSRR when supplying 1.2 W. In IEEE International Symposium on Solid-State Circuits Digest of Technical Papers (pp. 240–242). Santa Monica: IEEE.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Gael Pillonnet
    • 1
  • Remy Cellier
    • 1
  • Angelo Nagari
    • 2
  • Philippe Lombard
    • 1
  • Nacer Abouchi
    • 1
  1. 1.CPE Department, Institute of Nanotechnology, University of LyonVilleurbanneFrance
  2. 2.ST Ericsson, Advanced IP DivisionGrenobleFrance

Personalised recommendations