Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 2, pp 425–437 | Cite as

Accurate analysis of spectral regrowth of nonlinear power amplifier driven by cyclostationary modulated signals

Article

Abstract

In this paper we present an exact analytical expression to calculate the spectral regrowth at the output of a nonlinear power amplifier (PA) using the higher order cumulants and Poisson summation formula. This PA is driven by the filtered digitally modulated signals. To improve the accuracy of the calculations, the cyclosationarity of the input signal is considered. Moreover, closed-form expressions for the 1-dB compression and saturation points are extracted as a function of the PA model parameters, higher order statistics of the input signal, and the transfer function of the pulse shaping filter. In addition, an analytical expression for the adjacent channel power (ACP) and a closed-form expression of the ACP ratio are derived. This is followed by investigation of the effect of the PA nonlinearity on the performance of receiver. Simulation studies are carried out to verify the accuracy of the derived expressions. Excellent agreement between the analytical and simulation results is achieved.

Keywords

Power amplifier nonlinearity Power spectral density Adjacent channel interference Average transmit and receive power Saturation and 1-dB compression points 

References

  1. 1.
    Reynaert, P., & Steyaert, M. (2006). RF power amplifiers for mobile communications. Dordrecht: Springer.Google Scholar
  2. 2.
    Cripps, S. (2006). RF power amplifiers for wireless communications (2nd ed.). Norwood, MA: Artech House.Google Scholar
  3. 3.
    Lavradore, P. M., Cunha, T. R., Cabral, P. M., & Pedro, J. C. (2010). The linearity-efficiency compromise. IEEE Microwave Magazine, 11(5), 44–58.CrossRefGoogle Scholar
  4. 4.
    Palicot, J. (2012). Cross-layer sensors for green cognitive radio. Annals of Telecommunications, 67(3–4), 171–180.CrossRefGoogle Scholar
  5. 5.
    Schreurs, D., O’droma, M., Goacher, A. A., & Gadringer, M. (2009). RF power amplifier behavioral modeling. New York: Cambridge University Press.Google Scholar
  6. 6.
    Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.CrossRefGoogle Scholar
  7. 7.
    Gard, K. G., Gutierrez, H. M., & Steer, M. B. (1999). Characterization of spectral regrowth in microwave amplifiers based on the nonlinear transformation of a complex Gaussian process. IEEE Transactions on Microwave Theory and Techniques, 47(7), 1059–1069.CrossRefGoogle Scholar
  8. 8.
    Costa, E., & Pupolin, S. (2002). M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472.CrossRefGoogle Scholar
  9. 9.
    Zhou, G. T., & Raich, R. (2004). Spectral analysis of polynomial nonlinearity with applications to RF power amplifiers. Journal on Applied Signal Process, Special Issue on Nonlinear Signal and Image Process, 2004(12), 1831–1840.Google Scholar
  10. 10.
    Rahmati, M. M., Abdipour, A., Mohammadi, A., & Moradi, G. (2011). An analytic approach for CDMA output of feedforward power amplifier. Analog Integrated Circuits and Signal Processing, 66, 349–361.CrossRefGoogle Scholar
  11. 11.
    Madani, M. H., Abdipour, A., & Mohammadi, A. (2010). Analysis of performance degradation due to non-linearity and phase noise in orthogonal frequency division multiplexing systems. IET Communications, 4(10), 1226–1237.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Boulejfen, N., Harguem, A., Hammi, O., Ghannouchi, F. M., & Gharsallah, A. (2010). Analytical prediction of spectral regrowth and correlated and uncorrelated distortion in multicarrier wireless transmitters exhibiting memory effect. IET Microwaves, Antennas and Propagation, 4(6), 685–696.CrossRefGoogle Scholar
  13. 13.
    Zhou, G. T. (2000). Analysis of spectral regrowth of weakly nonlinear power amplifier. IEEE Communication Letters, 4(11), 357–359.CrossRefGoogle Scholar
  14. 14.
    Zhou, G. T., & Kenney, J. S. (2002). Predicting spectral regrowth of nonlinear power amplifiers. IEEE Transactions on Communications, 50(5), 718–722.CrossRefGoogle Scholar
  15. 15.
    Raich, R., & Zhou, G. T. (2001). Analyzing spectral regrowth of QPSK and OQPSK signals. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP ’01) (pp. 2673–2676).Google Scholar
  16. 16.
    Raich, R., & Zhou, G. T. (2004). Spectral analysis for bandpass nonlinearity with cyclostationary input. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP ’04), Quebec, Canada (pp. ii465–ii468).Google Scholar
  17. 17.
    Cottais, E., Wang, Y., & Toutain, S. (2008). Spectral regrowth analysis at the output of a memoryless power amplifier with multicarrier signals. IEEE Transactions on Communications, 56(7), 1111–1118.CrossRefGoogle Scholar
  18. 18.
    Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill.Google Scholar
  19. 19.
    Qi, J., & Aissa, S. (2010). Analysis and compensation of power amplifier nonlinearity in MIMO transmit diversity systems. IEEE Transactions on Vehicular Technology, 59(6), 2921–2931.CrossRefGoogle Scholar
  20. 20.
    Bendetto, S., & Biglieri, E. (1999). Principles of digital transmission: With wireless applications. New York: Kluwer/Plenum Publishers.Google Scholar
  21. 21.
    Brillinger, D. R. (1981). Time series: Data analysis and theory. San Francisco, CA: Holden-day Inc.MATHGoogle Scholar
  22. 22.
    Dobre, O. A., & Bar-Ness, Y., & Su, W. (2003). Higher-order cyclic cumulants for high order modulation classification. In Proceedings of the IEEE military communications conference (MILCOM) (pp. 112–117).Google Scholar
  23. 23.
    Nikias, C. L., & Petropulu, A. P. (1993). Higher-order spectra analysis, a nonlinear signal processing framework. Englewood Cliffs, NJ: Prentice-Hall.MATHGoogle Scholar
  24. 24.
    Li, J., & Liu, Q. (2006). PSK communications systems using fully saturated power amplifiers. IEEE Transactions on Aerospace and Electronic Systems, 42(2), 464–477.CrossRefGoogle Scholar
  25. 25.
    Hayes, M. H. (1996). Statistical digital signal processing and modeling. New York: Wiley.Google Scholar
  26. 26.
    Pinsky, M. A. (2002). Introduction to Fourier analysis and wavelets. Pacific Grove, CA: Brooks/Cole.MATHGoogle Scholar
  27. 27.
    Surmfels, B. (2002). Solving systems of polynomial equations. Providence, RI: American Mathematical Society.Google Scholar
  28. 28.
    Flohberger, M., Gappmair, W., & Koudelka, O. (2010). Modulation classifier for signals used in satellite communications. In Proceedings of the 5th advanced satellite multimedia systems conference (ASMA) and 11th signal processing for space communication workshop (SPSC) (pp. 198–202).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mahdi Majidi
    • 1
  • Abbas Mohammadi
    • 1
  • Abdolali Abdipour
    • 1
  1. 1.Microwave/mm-Wave and Wireless Communications Research Lab, Electrical Engineering DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations