Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 1, pp 175–192 | Cite as

A test and calibration strategy for adjustable RF circuits

  • John Liaperdos
  • Angela Arapoyanni
  • Yiorgos Tsiatouhas
Article

Abstract

A test and calibration strategy suitable for adjustable RF circuits is presented in this paper. Certain performance-affecting circuit elements are designed to be digitally controllable, providing the capability to adjust the performance characteristics of a circuit’s instance around their post-fabrication values, throughout a set of discrete states of operation. The alternate test methodology is adopted for test and calibration and a set of optimally selected test observables is used to develop regression models for the prediction of the circuit’s performance characteristics in every state of operation. In the test phase, measurements of the test observables are obtained from a subset of the circuit’s states. The processing of these observables provides accurate prediction of the RF circuit’s performance characteristics in all available states and enables the discrimination of defect-free from defective circuits. The latter is further accomplished by the exploitation of an extended superset of the test observables, the use of which intends to maximize fault coverage. Moreover, the predicted performance characteristics are also used to examine compliance with the specifications and to allow calibration of the RF circuit by identifying the appropriate state of operation at which all specifications are met and, consequently, by forcing the circuit to operate in this specific state. The efficiency of the proposed technique has been validated by its application to a typical differential RF Mixer designed in a 0.18 μm CMOS technology. Simulation results have been obtained and assessed.

Keywords

Calibration Defect-oriented RF testing Performance prediction RF alternate test RF mixer testing 

References

  1. 1.
    Acar, E., & Ozev, S. (2005). Defect-based RF testing using a new catastrophic fault model. In Proceedings of the IEEE international test conference (ITC) (pp. 429–437).Google Scholar
  2. 2.
    Banerjee, A., Sen, S., Devarakond, S., & Chatterjee, A. (2011). Accurate signature driven power conscious tuning of RF systems using hierarchical performance models. In Proceedings of the IEEE international test conference (ITC) (pp. 1–9).Google Scholar
  3. 3.
    Counts, L. (2007). Analog and mixed-signal innovation: The process-circuit-system-application interaction. In Proceedings of the IEEE international conference on solid-state circuits (pp. 26–32).Google Scholar
  4. 4.
    Das, T., Gopalan, A., Washburn, C., & Mukund, P. (2005). Self-calibration of input-match in RF front-end circuitry. IEEE Transactions on Circuits and Systems II, 52(12), 821–825.CrossRefGoogle Scholar
  5. 5.
    Dufrene, K., & Weigel, R. (2006). A novel IP2 calibration method for low-voltage downconversion mixers. In Proceedings of the IEEE international symposium on radio frequency integrated circuits (RFIC) (pp. 292–295). San Jose, CA, USA.Google Scholar
  6. 6.
    Ferrario, J., Wolf, R., & Moss, S. (2002). Architecting millisecond test solutions for wireless phone RFICs. In Proceedings of the IEEE international test conference (ITC) (pp. 1151–1158).Google Scholar
  7. 7.
    Friedman, J. H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1–141MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Garcia-Moreno, E., Suenaga, K., Picos, R., Bota, S., Roca, M., & Isern, E. (2009). Predictive test strategy for CMOS RF mixers. Integration, the VLSI Journal, 42, 95–102.CrossRefGoogle Scholar
  9. 9.
    Goering, R., & Wilson, R. (2003). Yield, packages hang up design below 100 nm, EE Times, http://www.eetimes.com.
  10. 10.
    Goyal, A., Swaminathan, M., & Chatterjee, A. (2009). A novel self-healing methodology for RF amplifier circuits based on oscillation principles. In Proceedings of the IEEE design automation & test in Europe (DATE) (pp. 1656–1661).Google Scholar
  11. 11.
    Goyal, A., Swaminathan, M., & Chatterjee, A. (2009). Self-calibrating embedded RF down-conversion mixers. In Proceedings of the IEEE Asian Test Symposium (ATS) (pp. 249–254). Taichung, Taiwan.Google Scholar
  12. 12.
    Han, D., Kim, B. S., & Chatterjee, A. (2010). DSP-driven self-tuning of RF circuits for process-induced performance variability. IEEE Transactions on VLSI Systems, 18(2), 305–314.CrossRefGoogle Scholar
  13. 13.
    Hastie, T., Tibshirani, R., Friedman, J. (2001). The elements of statistical learning. New York: Springer.MATHGoogle Scholar
  14. 14.
    Khereddine, R., Abdallah, L., Simeu, E., Mir, S., & Cenni, F. (2010). Adaptive logical control of RF LNA performances for efficient energy consumption. In Proceedings of the IFIP/IEEE international conference on very large scale integration (VLSI-SoC) (pp. 518–525).Google Scholar
  15. 15.
    Kupp, N., Drineas, P., Slamani, M., & Makris, Y. (2008) Confidence estimation in non-RF to RF correlation-based specification test compaction. In Proceedings of the 13th European test symposium (ETS) (pp. 35–40).Google Scholar
  16. 16.
    Kupp, N., Huang, H., Makris, Y., & Drineas, P. (2011). Improving analog and RF device yield through performance calibration. IEEE Design and Testing of Computers, 28(3), 64–75.CrossRefGoogle Scholar
  17. 17.
    Leung, B. (2011). VLSI for wireless communication. New York: Springer.CrossRefGoogle Scholar
  18. 18.
    Liaperdos, I., Dermentzoglou, L., Arapoyanni, A., & Tsiatouhas, Y. (2011). Fault detection in RF mixers combining defect-oriented and alternate test strategies. In Conference on design of circuits and integrated systems (DCIS).Google Scholar
  19. 19.
    Liaperdos, I., Dermentzoglou, L., Arapoyanni, A., & Tsiatouhas, Y. (2011). A test technique and a BIST circuit to detect catastrophic faults in RF mixers. In Conference on design and technology of integrated systems in the nanoscale era (DTIS).Google Scholar
  20. 20.
    Maas, S. A. (1993). Microwave mixers. Boston: Artech House Publishers.Google Scholar
  21. 21.
    Najibi, T. (2003). How designers can increase parametric yield, EE Times http://www.eetimes.com.
  22. 22.
    Nassif, S. R. (2000). Design for variability in DSM technologies. In Proceedings of the IEEE 1st international symposium on quality of electronic design (ISQED) (pp. 451–454). San Jose, CA, USA.Google Scholar
  23. 23.
    Natarajan, V., Sen, S., Banerjee, A., Chatterjee, A., Srinivasan, G., & Taenzler, F. (2010). Analog signature-driven postmanufacture multidimensional tuning of RF systems. IEEE Design and Testing of Computers, 27(6), 6–17.CrossRefGoogle Scholar
  24. 24.
    Natarajan, V., Sen, S., Devarakond, S. K., & Chatterjee, A. (2010). A holistic approach to accurate tuning of RF systems for large and small multiparameter perturbations. In Proceedings of the 28th VLSI test symposium (VTS) (pp. 331–336).Google Scholar
  25. 25.
    Park, J., Shin, H., & Abraham, J. A. (2008). Parallel loopback test of mixed signal circuits. In Proceedings of the IEEE VLSI test symposium (pp. 309–316).Google Scholar
  26. 26.
    Razavi, B. (1997). RF microelectronics. Upper Saddle River: Prentice-Hall Inc.Google Scholar
  27. 27.
    Rodriguez, S., Rusu, A., Zheng, L. R., & Ismail, M. (2008). Digital calibration of gain and linearity in a CMOS RF mixer. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS) (pp. 1288–1291). Seattle, USA.Google Scholar
  28. 28.
    Safran, J., Leslie, A., Fredeman, G., Kothandaraman, C., Cestero, A., Xiang, C., Rajeevakumar, R., Deok-Kee, K., Zun, L. Y., Moy, N. R. D., Kirihata, T., & Iyer, S. (2007). A compact e-FUSE programmable array memory for SOI CMOS. In Proceedings of the IEEE symposium on VLSI circuits (pp. 72–73).Google Scholar
  29. 29.
    SIA—The international technology roadmap for semiconductors. http://public.itrs.net.
  30. 30.
    Stratigopoulos, H. G., Mir, S., Acar, E., & Ozev, S. (2009). Defect filter for alternate RF test. In Proceedings of the IEEE European test symposium (pp. 161–166).Google Scholar
  31. 31.
    Suenaga, K., Picos, R., Bota, S., Roca, M., Isern, E., & Garcia-Moreno, E. (2005). Built-in test strategy for CMOS RF mixers. In Conference on design of circuits and integrated systems (DCIS).Google Scholar
  32. 32.
    Variyam, P., Cherubal, S., & Chatterjee, A. (2002). Prediction of analog performance parameters using fast transient testing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(3), 349–361.CrossRefGoogle Scholar
  33. 33.
    Zhang, C., Gharpurey, R., & Abraham, J. A. (2007). Built-in test of RF mixers using RF amplitude detectors. In Proceedings of the international conference on quality of electronic design (ISQED) (pp. 404–409).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • John Liaperdos
    • 1
  • Angela Arapoyanni
    • 2
  • Yiorgos Tsiatouhas
    • 3
  1. 1.Department of Information Technology and TelecommunicationsTechnological Educational Institute of KalamataSpartaGreece
  2. 2.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensAthensGreece
  3. 3.Department of Computer ScienceUniversity of IoanninaIoanninaGreece

Personalised recommendations