Analog Integrated Circuits and Signal Processing

, Volume 73, Issue 2, pp 627–636 | Cite as

Cognitive radio testing using psychometric approaches: applicability and proof of concept study

  • Carl B. Dietrich
  • Edward W. Wolfe
  • Garrett M. Vanhoy


Cognitive radios promise efficient spectrum use and other performance improvements through use of machine learning to adapt the radios’ operational parameters to optimize performance; however, their flexibility complicates evaluation of cognitive radios’ performance. We propose to improve cognitive radio development and evaluation using approaches developed for efficiently measuring and testing human cognitive characteristics. Cognitive radio performance evaluation requirements and applicable psychometric approaches are described. Finally, a proof of concept application of a psychometric measurement technique to evaluate cognitive engine performance is presented for simulated channel conditions for multiple prioritizations of optimization goals.


Cognitive radio Cognitive radio testing Psychometric testing Item response models Item response theory Optimization 



This study was supported in part by the National Science Foundation under Grant 0851400 and by Virginia Tech’s Institute for Critical Technology and Applied Science (ICTAS). Thanks to Cecile Dietrich for suggesting this collaboration.


  1. 1.
    Mitola, J. III., & Maguire, G. Q., Jr. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  2. 2.
    Haykin, S. (2005). Cognitive radio: brain-empowered wireless communications. IEEE JSAC, 23(2), 201–220.Google Scholar
  3. 3.
    Soliman, S. (2004). Cognitive radio: Key performance indicators. BWRC Cognitive Radio Workshop. Retrieved February 28, 2012, from
  4. 4.
    Zhao, Y., Mao, S., Neel, J. O., & Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642–659.CrossRefGoogle Scholar
  5. 5.
    Application note: Testing modern radios. (2012). Solutions for designing software defined radios that employ legacy and modern modulation schemes with frequency hopping techniques. Retrieved February 28, 2012, from
  6. 6.
    Application note: Installed radio testing with the 3500. (2012). Aeroflex. Retrieved February 28, 2012, from
  7. 7.
    Riihijärvi, J. & Agustí, R. (Eds.). (2010). Flexible and spectrum-aware radio access through measurements and modelling in cognitive radio systems, FARAMIR document number D2.1: State of the art review, April 30, 2010. Accessed February 28, 2012, from
  8. 8.
    Newman, T. R., Hasan, S. M. S., Depoy, D., Bose, T., & Reed, J. H. (2010). Designing and deploying a building-wide cognitive radio network testbed. IEEE Communications Magazine, 48(9), 106–112.CrossRefGoogle Scholar
  9. 9.
    Wright, B. D., & Masters, G. N. (1982). Rating scale analysis: Rasch measurement. Chicago: MESA.Google Scholar
  10. 10.
    DeBoeck, P., & Wilson, M. (2004). Explanatory item response models. New York: Springer.Google Scholar
  11. 11.
    Briggs, D. C., & Wilson, M. (2003). An introduction to multidimensional measurement using Rasch models. Journal of Applied Measurement, 4(1), 87–100.Google Scholar
  12. 12.
    Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago.Google Scholar
  13. 13.
    Newman, T. R. (2008). Multiple objective fitness functions for cognitive radio adaptation, Ph.D. dissertation, University of Kansas, Lawrence, KS.Google Scholar
  14. 14.
    Dietrich, C. B., Wolfe, E. W., & Vanhoy, G. M. (2012). Evaluation of multi-objective optimizers for cognitive radio using psychometric methods: analysis using unidimensional and multidimensional Rasch models, ICST CROWNCOM 2012. Sweden: Stockholm.Google Scholar
  15. 15.
    Linacre, J. M. (2011). WINSTEPS Rasch measurement computer program (Version 3.71.0). Scholar
  16. 16.
    Wright, B. D. & Linacre, M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8, 370.o.Google Scholar
  17. 17.
    Amanna, A. E., Ali, D., Gadhiok, M., Price, M. & Reed, J. H. (2012). Cognitive radio engine parametric optimization utilizing Taguchi analysis. EURASIP Journal on Wireless Communications and Networking, 2012(5).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carl B. Dietrich
    • 1
  • Edward W. Wolfe
    • 2
  • Garrett M. Vanhoy
    • 3
  1. 1.Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA
  2. 2.PearsonIowa CityUSA
  3. 3.University of ArizonaTucsonUSA

Personalised recommendations