Analog Integrated Circuits and Signal Processing

, Volume 73, Issue 2, pp 569–582 | Cite as

Implementation of an SDR system using an MPI-based GPU cluster for WiMAX and LTE

  • Chiyoung Ahn
  • Saehee Bang
  • Hyohan Kim
  • Seunghak Lee
  • June Kim
  • Seungwon Choi
  • John Glossner
Article

Abstract

This paper presents an implementation of a 2 × 2 Multi-Input Multi-Output Software Defined Radio (SDR) Base Station system using a Message Passing Interface (MPI)-based Graphic Processing Unit (GPU) cluster as its modem processor for a high-speed data processing. Recently, GPUs have been widely researched especially for SDR systems because of their capability for exploiting parallel processing using a large number of Arithmetic Logic Units. MPI-based GPU clusters have been adopted in order to further increase performance capability. From our experimental results, it has been found that the implemented system consisting of three GPU nodes can enhance the modem speed by more than 2.5 times compared to a single GPU system. A dual-mode Mobile Device (MD) prototype supporting Worldwide Interoperability for Microwave Access and Long Term Evolution communications systems is implemented. In our design, one of the two waveforms can automatically be selected by the MD itself using a dual-mode controller that determines the reconfiguration of the MD modem depending on the received signal quality.

Keywords

SDR MPI GPU WiMAX LTE MIMO 

References

  1. 1.
    Tuttlebee, W. (2002). The software defined radio: enabling technologies. Chichester: Wiley.CrossRefGoogle Scholar
  2. 2.
    Kim, J., Hyeon, S., & Choi, S. (2010). Implementation of an SDR system using graphics processing unit. IEEE Communication Magazine, 48, 156–162.CrossRefGoogle Scholar
  3. 3.
    Plishker, W., Zaki, G. F., Bhattacharyya, S. S., Clancy, C., & Kuykendall, J. (2011). Applying graphics processor acceleration in a software defined radio prototyping environment. In: 2011 22nd IEEE International Symposium on Rapid System Prototyping (RSP), pp. 67–73.Google Scholar
  4. 4.
    Nian, S., & Guangmin, L. (2009). Dynamic load balancing algorithm for MPI parallel computing. In: International Conference on New Trends in Information and Service Science, pp. 95–99.Google Scholar
  5. 5.
    Wang, Z., Yang, X., & Zhou, Y. (2010). A scalable fault tolerance mechanism for MPI large scale parallel computing. In: IEEE International Conference on Computer and Information Technology (CIT), pp. 1251–1256.Google Scholar
  6. 6.
    LeBlanc, T. P., Subhlok, J., & Gabriel, E. (2010). A high-level interpreted MPI library for parallel computing in volunteer environments. In: IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 673–678.Google Scholar
  7. 7.
    Vishnu, A., Santhanaraman, G., Huang, W., Jin, H., & Panda, D. K. (2005). Supporting MPI-2 one sided communication on multi-rail infiniband clusters: design challenges and performance benefits. In: High Performance Computing—HiPC, 12th International Conference, pp. 137–147.Google Scholar
  8. 8.
    Message Passing Interface Forum. (2009). MPI: A message-passing interface standard version 2.2.Google Scholar
  9. 9.
    Mueck, M., Piipponen, A., Kalliojarvi, K., Dimitrakopoulos, G., Tsagkaris, K., Demestichas, P., et al. (2010). ETSI reconfigurable radio systems: Status and future directions on software defined radio and cognitive radio standards. IEEE Communications Magazine, 48(9), 78–86.CrossRefGoogle Scholar
  10. 10.
    Zetterman, T., Piipponen, A., Raiskila, K., & Slotte, S. (2011). Multi-radio coexistence and collaboration on an SDR platform. Analog Integrated Circuits and Signal Processing, 69(2–3), 329–339.CrossRefGoogle Scholar
  11. 11.
    Mitola, I. J. (1993). Software radios: survey, critical evaluation and future directions. IEEE Aerospace and Electronic Systems Magazine, 8(4), 25–36.CrossRefGoogle Scholar
  12. 12.
    Mitola, I. J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  13. 13.
    Cordier, P., Houze, P., Jemaa, S. B., Simon, O., Bourse, D., Grandblaise, D., Luo, J., Tsagkaris, K., Agusti, R., Olaziregi, N., Boufidis, Z., Buracchini, E., Goria, P., & Trogolo, A. (2006). E2R cognitive pilot channel concept. In: 15th IST Mobile and Wireless Communications Summit 2006.Google Scholar
  14. 14.
    Sallent, O., Perez-Romero, J., Goria, P., Buracchini, E., Trogolo, A., Tsagkaris, K., & Demestichas, P. (2009). Cognitive pilot channel: a radio enabler for spectrum awareness and optimized radio resource management. In: Proceedings of ICT-Mobile Summit 2009.Google Scholar
  15. 15.
    NVIDIA Corporation. (2009). NVIDIA CUDA programming guide.Google Scholar
  16. 16.
    Graham, R. L., Shipman, G. M., Barrett, B. W., Castaing, R. H., Bosilca, G., & Lumsdaine, A. (2006). Open MPI: a high-performance, heterogeneous MPI. In: IEEE International Conference on Cluster Computing, pp. 1–9.Google Scholar
  17. 17.
    IEEE (2007). Std 802.16e-2005 IEEE standard for local and metropolitan area networks, part 16: air interface for fixed and mobile broadband wireless access systems.Google Scholar
  18. 18.
    3GPP (2010). 3rd Generation Partnership Project (3GPP); Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (Release 9), http://3gpp.org/ftp/specs/html-info/3611.htm.
  19. 19.
    Wu, D., Eilert, J., Asghar, R., Liu, D., & Ge, M. (2010). VLSI implementation of a multi-standard MIMO symbol detector for 3GPP LTE and WiMAX. In: Wireless Telecommunications Symposium (WTS).Google Scholar
  20. 20.
    Sklar, B. (2001). Digital communications—fundamentals and applications (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  21. 21.
    Raju, M. S., Annavajjala, R., & Chockalingam, A. (2006). BER analysis of QAM on fading channels with transmit diversity. IEEE Transactions on Wireless Communications, 5(3), 481–486.CrossRefGoogle Scholar
  22. 22.
    NVIDIA Corporation (2011). NVIDIA GTX 295 Datasheet, NVIDIA Corporation. http://www.nvidia.com/object/product_geforce_gtx_295_us.html.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chiyoung Ahn
    • 1
  • Saehee Bang
    • 1
  • Hyohan Kim
    • 1
  • Seunghak Lee
    • 1
  • June Kim
    • 1
  • Seungwon Choi
    • 1
  • John Glossner
    • 2
  1. 1.Department of Electronics and Computer EngineeringHanyang UniversitySeoulKorea
  2. 2.Optimum Semiconductor Technologies, Inc.TarrytownUSA

Personalised recommendations