Analog Integrated Circuits and Signal Processing

, Volume 73, Issue 2, pp 637–648 | Cite as

Parametric optimization of software defined radio configurations using design of experiments

  • Ashwin E. Amanna
  • Daniel Ali
  • David Gonzalez Fitch
  • Jeffrey H. Reed
Article

Abstract

Cognitive radio (CR) systems incorporate learning and decision making into wireless and networking systems with the goal of improving performance and interoperability. Research has focused on artificial intelligence control and optimization of radio input parameters with little attention placed on identifying initialization parameters of cognitive engines or on testing methods. While CR techniques continue to advance, calibration and testing remain largely stagnant with reliance on ad hoc and highly application specific approaches. Given that cognitive radio will be deployed in a variety of environments with each requiring unique calibration, systematic procedures are needed. An approach founded in design of experiments provides a purposeful framework for performing testing and identification of initialization parameters with an efficient number of test cases. Response surface methodology designs identify representative knowledge of system performance including input parameter significance and quadratic estimation models of output metrics. An example of calibrating transmit-and-receive gain settings on a software-defined radio illustrates the use of the framework.

Keywords

Cognitive radio Cognitive engine Design of experiments Parametric optimization 

References

  1. 1.
    Newman, T. R., & Evans, J. B. (2008). Parameter sensitivity in cognitive radio adaptation engines. In: Proc. 3rd IEEE Symp. New Frontiers in Dynamic Spectrum Access Networks DySPAN 2008, pp. 1–5.Google Scholar
  2. 2.
    Amanna, A. E., Ali, D., Gadhiok, M., Price, M., & Reed J. H. (2011). Statistical framework for parametric optimization of cognitive radio systems. In: Proc. SDR Forum Technical Conference and Product Exposition (SDR’11).Google Scholar
  3. 3.
    MIL-STD-449D (1973). Measurements of radio frequency spectrum characteristics mil-std-449d. Department of Defense, Tech. Rep.Google Scholar
  4. 4.
    Posherstnik, Y., Totaro, M., Mai, T., & Molnar, J. (2010) Testing of policy-based dynamic spectrum access radios. In: Military Communications Conference.Google Scholar
  5. 5.
    Arslan, H. (2007). Testing and measurement of cognitive radio and software defined radio systems. In: SDR Forum Technical Conference.Google Scholar
  6. 6.
    Jue, G., & Cutler, B. (2010). A design-to-test methodology for sdr and cognitive radio. In: Aerospace and Defense Symposium.Google Scholar
  7. 7.
    Jones, S. K., Phillips, T. W., Tuyl, H. L. V., & Weller, R. D. (2008). Evaluation of the performance of prototype tv- band white space devices (phase ii). FCC, Tech. Rep. FCC/OET 08-TR-1005.Google Scholar
  8. 8.
    NTIA (2009). Spectrum sharing innovation test-bed pilot program. NTIA, Tech. Rep., 2009. [Online]. Available: http://www.ntia.doc.gov/frnotices/2006/spectrumshare/comments.htm.
  9. 9.
    Ziegler, J. (2009). Sdr forum: Test and measurement task group: Ieee 802.11-09/1123r0. Wireless Innovation Forum, Tech. Rep.Google Scholar
  10. 10.
    Zhao, Y., Mao, S., Neel, J., & Reed, J.H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. In: Proceedings of the IEEE, 97(4).Google Scholar
  11. 11.
    Montgomery, D. C. (2001). Design and analysis of experiments. New york: Wiley.Google Scholar
  12. 12.
    Jain, R. (1991). The art of computer systems performance analysis: Techniques for experimental design, measurement, simulation, and modeling. New York: Wiley.MATHGoogle Scholar
  13. 13.
    Gaeddert, J. D. (2001). Facilitating wireles communications through intelligent resource management of software-defined radios in dynamic spectrum environments. Ph.D. dissertation, Virginia Tech.Google Scholar
  14. 14.
    Balister, P., & Reed, J. H. (2006). Usrp hardware and software description. Virginia Tech, Tech. Rep. 9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ashwin E. Amanna
    • 1
  • Daniel Ali
    • 1
  • David Gonzalez Fitch
    • 1
  • Jeffrey H. Reed
    • 1
  1. 1.Bradley Department of Electrical and Computer EngineeringWireless @ Virginia TechBlacksburgUSA

Personalised recommendations