Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 2, pp 409–416 | Cite as

A 0.6-V subthreshold-leakage suppressed fully differential CMOS switched-capacitor amplifier

Article
  • 384 Downloads

Abstract

A 0.6-V subthreshold-leakage suppressed fully differential CMOS switched-capacitor amplifier using Analog T-switch scheme in a standard 0.18 μm CMOS technology is presented. The circuit design of major building blocks is described. The performance of this circuit is demonstrated by experimental results. The experimental results confirm the capability of Analog T-switch scheme to fulfill circuit requirements.

Keywords

Subthreshold-leakage Low-voltage CMOS Switched-capacitor amplifier 

Notes

Acknowledgments

This work was supported by the National Science Council, Taiwan, Republic of China, under Contract NSC99-2221-E-224-080. The authors would like to acknowledge fabrication support provided by National Chip Implementation Center (CIC). The authors would like to thank Yi-Cheng Huang and Wen-Zhe Lu for their assistance with simulation and layout.

References

  1. 1.
    Martin, K., Ozcolak, L., Lee, Y. S., & Temes, G. C. (1987). A differential switched-capacitor amplifier. IEEE Journal of Solid-State Circuits, 22(1), 104–106.CrossRefGoogle Scholar
  2. 2.
    Yang, J. W., & Martin, K. W. (1989). High-resolution low-power D/A converter. IEEE Journal of Solid-State Circuits, 24(5), 1458–1461.CrossRefGoogle Scholar
  3. 3.
    Crols, J., & Steyaert, M. (1994). Switched-opamp: An approach to realize full CMOS switched-capacitor circuits at very low power supply voltage. IEEE Journal of Solid-State Circuits, 29(8), 936–942.CrossRefGoogle Scholar
  4. 4.
    Yoshizawa, H., Huang, Y., Ferguson, P. F., Jr., & Temes, G. C. (1999). MOSFET-only switched-capacitor circuits in digital CMOS technology. IEEE Journal of Solid-State Circuits, 34(6), 734–747.CrossRefGoogle Scholar
  5. 5.
    Lee, T. S., & Lu, C. C. (2010). Two 1-V fully differential CMOS switched-capacitor amplifiers. Circuits, Systems and Signal Processing, 29(2), 195–207.MATHCrossRefGoogle Scholar
  6. 6.
    Roy, K., Mukhopadhyay, S., & Mahmoodi-Meimand, H. (2003). Leakage current mechanism and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE, 91(2), 305–327.MATHCrossRefGoogle Scholar
  7. 7.
    Taur, Y., & Ning, T. H. (1998). Fundamentals of modern VLSI devices. New York: Cambridge University Press.Google Scholar
  8. 8.
    Roh, H., Kim, H., Choi, Y., Roh, J., Kim, Y.-G., & Kwon, J.-K. (2009). A 0.6-V delta-sigma modulator with subthreshold-leakage suppression switches. IEEE Transactions on Circuits and Systems-II, 56(11), 825–829.CrossRefGoogle Scholar
  9. 9.
    Ishida, K., Kanda, K., Tamtrakarn, A., Kawaguchi, H., & Sakurai, T. (2006). Managing subthreshold leakage in charge-based analog circuits with low-V th transistors by analog T-switch (AT-switch) and super cut-off CMOS (SCCMOS). IEEE Journal of Solid-State Circuits, 41(4), 859–867.CrossRefGoogle Scholar
  10. 10.
    Matsumoto, H., & Watanabe, K. (1987). Spike-free switched-capacitor circuit. Electronics Letters, 23(8), 428–429.CrossRefGoogle Scholar
  11. 11.
    Waltari, M., & Halonen, K. (1998). Fully differential switched opamp with enhanced common-mode feedback. Electronics Letters, 34(23), 2181–2182.CrossRefGoogle Scholar
  12. 12.
    Garrity, D., & Rakers, P. (1999). Common-mode output sensing circuit. U.S. Patent 5,894,284, April 13.Google Scholar
  13. 13.
    Choksi, O., & Carley, L. R. (2003). Analysis of switched-capacitor common-mode feedback circuit. IEEE Transactions on Circuits and Systems-II, 50(12), 906–917.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electronic EngineeringNational Yunlin University of Science and TechnologyDouliouTaiwan, R.O.C.
  2. 2.Department of Electrical EngineeringNational Formosa UniversityHuweiTaiwan, R.O.C.

Personalised recommendations