Analog Integrated Circuits and Signal Processing

, Volume 73, Issue 2, pp 559–567 | Cite as

Implementation of parallel lattice reduction-aided MIMO detector using graphics processing unit

  • Hyunwook Yang
  • Taehyun Kim
  • Chiyoung Ahn
  • June Kim
  • Seungwon Choi
  • John Glossner


Since H. Yao proposed the lattice reduction (LR)-aided detection algorithm for the MIMO detector, one can exploit the diversity gain provided by the LR method to achieve performance comparable to the maximum likelihood (ML) algorithm but with complexity close to the simple linear detection algorithms such as zero forcing (ZF), minimum mean squared error, and successive interference cancellation, etc. In this paper, in order to reduce the processing time of the LR-aided detector, a graphics processing unit (GPU) has been proposed as the main modem processor in such a way that the detections can be performed in parallel using multiple threads in the GPU. A 2X2 multiple input multiple output (MIMO) WiMAX system has been implemented using a GPU to verify that various MIMO detection algorithms such as ZF, ML, and LR-aided methods can be processed in real-time. From the experimental results, we show that GPUs can realize a 2X2 WiMAX MIMO system adopting an LR-aided detector in real-time. We achieve a processing time of 2.75 ms which meets the downlink duration specification of 3 ms. BER performance of experimental tests also indicates that the LR-aided MIMO detector can fully exploit diversity gain as well as ML detector.


Lattice reduction GPU LR-aided detection 



This work was supported by the ICT Standardization program of MKE (The Ministry of Knowledge Economy).


  1. 1.
    Haykin, S., & Moher, M. (2005). Modern wireless communications. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  2. 2.
    Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.MATHGoogle Scholar
  3. 3.
    Proakis, J. (2000). Digital communications (4th ed.). New York: McGraw- Hill.Google Scholar
  4. 4.
    Patel, P., & Holtzman, J. (1994). Analysis of a simple successive interference cancellation scheme in a DS/CDMA system. IEEE Journal on Selected Areas in Communications, 12, 796–807.CrossRefGoogle Scholar
  5. 5.
    Yao, H., & Wornell, W. (2002). Lattice-reduction-aided detectors for MIMO communication systems. Global Telecommunication Conference, 1, 424–428.Google Scholar
  6. 6.
    Wübben, D., Böhnke, R., Kühn, V., & Kammeyer, K. (2004). Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice-reduction. 2004 IEEE International Conference on Communications, 2, 798–802.Google Scholar
  7. 7.
    Lenstra, A. K., Lenstra, H. W., & Lovász, L. (1982). Factoring polynomials with rational coefficients. Mathematische Annalen, 261, 515–534.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gan, Y. H., & Mow, W. H. (2005). Complex lattice reduction algorithms for low-complexity MIMO detection. IEEE Globecom 2005, 5, 2953–2957.Google Scholar
  9. 9.
    Kim, J., Hyeon, S., & Choi, S. (2010). Implementation of an SDR system using graphics processing unit. Communications Magazine of the IEEE, 48, 156–162.CrossRefGoogle Scholar
  10. 10.
    Ahn, C., Kim, J., Ju, J., Choi, J., Choi, B., & Choi, S. (2011). Implementation of an SDR platform using GPU and its application to a 2X2 MIMO WiMAX system. Analog Integrated Circuits and Signal Processing, 69, 107–117.CrossRefGoogle Scholar
  11. 11.
    Vetter, H., Ponnampalam, V. Sandell, M., & Hoeher, P. A. (2009). Fixed complexity LLL algorithm. IEEE Transactions on Signal Processing, 57, 4.Google Scholar
  12. 12.
    Windpassinger, C. (2004) Detection and precoding for multiple input multiple output channels. Erlangen: Universität Erlangen.Google Scholar
  13. 13.
    NVIDIA Corporation. (2010). CUDA C Programming Guide. Santa Clara: NVIDIA Corporation.Google Scholar
  14. 14.
    NVIDIA Corporation. (2011).NVIDIA GTX 295 Datasheet, NVIDIA Corporation. Retrieved March 18, 2011, from

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hyunwook Yang
    • 1
  • Taehyun Kim
    • 1
  • Chiyoung Ahn
    • 1
  • June Kim
    • 1
  • Seungwon Choi
    • 1
  • John Glossner
    • 2
  1. 1.HY-SDR Research CenterHanyang UniversitySeoulSouth Korea
  2. 2.Optimum Semiconductor Technologies, Inc.TarrytownUSA

Personalised recommendations