Skip to main content
Log in

Multistandard transceivers: state of the art and a new versatile implementation for fully active frequency agile filters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The various architectures of transceivers for current standards are firstly compared. Different possibilities to achieve multi-standard transceivers are also recalled and compared. We demonstrate that ease of realization and flexibility evolve in opposite directions. The advantages and drawbacks of reconfigurable active filters are indicated. We demonstrate that the second generation current controlled conveyor operating in current mode is perfectly suitable for the realization of frequency-agile filters. After a brief recall of the essential points of agile filters, a second order frequency agile bandpass filter operating in current mode is implemented with CCCII+ . It has four central frequencies whose values could be selected digitally. The validation results show that its tuning ratio n = f 0max/f 0min is equal to 5.1 with f 0max = 1.22 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mak, P., S-S, U., & Martins, R. P. (2007). Transceiver structure selection: Review, state-of-the-art survey and case study. IEEE Circuits and Systems Magazine, 7(2), 6–25.

    Article  Google Scholar 

  2. Behzad, R. (1997). RF Microelectronics. Upper Saddle River: Prentice Hall. ISBN: 978-0138875718.

  3. Sun, Y.-R. (2006). Generalized bandpass sampling receivers for software defined radio. Doctoral thesis, Royal Institute of Technology, Stockholm.

  4. Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26–38.

    Article  Google Scholar 

  5. Abidi, A. A. (2007). The path to the software-defined radio receiver. IEEE Journal of Solid-State Circuits, 42(5), 954–966.

    Article  Google Scholar 

  6. Leod, J. R. M., Nesimoglu, T., Beach, M. A., & Warr, P. A. (2002). Enabling technologies for software defined radio transceivers. MILCOM 2002 Proceedings, 1(7–10), 354–358.

    Google Scholar 

  7. Maurer, L., Hueber, G., Dellsperger, T., Burger, T., Huemer, M., & Weigel, R. (2006). A frequency agile terminal receiver for wireless multi-standard applications. In: IEEE radio and wireless symposium (pp. 291–294). San Diego: IEEE.

  8. Balwant, G. (2006). Conception of novel wideband performance-controllable RF circuits in SiGe. In Impedance matching circuit, single-ended to differential baluns, and single-ended and differential low-noise amplifiers. Doctoral thesis, IMS Laboratory, Bordeaux.

  9. Cedric, M. (2006). Contribution a l’etude d’un Synthetiseur de Frequence pour Objets Communicants Multistandards en Technologie CMOS SO. Doctoral thesis, IMS Laboratory, Bordeaux.

  10. Yahya, L. (2009). “Filtres à Fréquence Agile Totalement Actifs: Théorie Générale et Circuits de Validation en Technologie SiGe BiCMOS 0.25 μm”. Doctoral thesis, IMS Laboratory, Bordeaux.

  11. Lakys, Y., Godara, B., & Fabre, A. (2009). Cognitive and encrypted communications, part 1: state of the art for frequency-agile filters. In ELECO’09 proceedings (pp. 1–16). Bursa: ELECO’09.

  12. Koochakzadeh, M., & Tamijani, A. (2008). Multi-scale tunable filter covering a frequency range of 6.5:1. In Microwave symposium digest, 2008 IEEE MTT-S international (pp. 1023–1026). Seattle: IEEE MTT-S.

  13. Nakaska, J. K., & Haslett, J. W. (2007). 2 GHz automatically tuned Q-enhanced CMOS bandpass filter. IEEE/MTT-S International Microwave Symposium, 3–8, 1599–1602.

    Article  Google Scholar 

  14. Pipilos, S., Tsividis, Y. P., Fenk, J., & Papananos, Y. (1996). A Si 1.8 GHz RLC filter with tunable center frequency and quality Factor. IEEE Journal of Solid-State Circuits, 31(10), 1517–1525.

    Article  Google Scholar 

  15. El Oualkadi, A. E., El Kaamouchi, M., Paillot, J.-M., Vanhoenacker-Janvier, D., & Flandre, D. (2007). Fully integrated high-Q switched capacitor bandpass filter with center frequency and bandwidth tuning. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 3–5, 681–684.

    Article  Google Scholar 

  16. Salem, S., Fakhfakh, M., Masmoudi, D., Loulou, M., Loumeau, P., & Masmoudi, N. (2006). A high performances CMOS CCII and high frequency applications. Analog Integrated Circuits and Signal Processing, 49(1), 71–78.

    Article  Google Scholar 

  17. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1998). High frequency high-Q BiCMOS current-mode bandpass filter and mobile communication application. IEEE Journal of Solid-State Circuits, 33(4), 614–625.

    Article  Google Scholar 

  18. Dülger, F., Sánchez-Sinencio, E., & Silva-Martinez, J. (2003). A 1.3-V 5-mW fully integrated tunable bandpass filter at 2.1 GHz in 0.35-μm CMOS. IEEE Journal of Solid-State Circuits, 38(6), 918–928.

    Article  Google Scholar 

  19. Yue, W., Shi, C., Ding, X., Ismail, M., & Olsson, H. (2002). Design of CMOS VHF/RF biquadratic filters. Analog Integrated Circuits and Signal Processing, 33(3), 239–248.

    Article  Google Scholar 

  20. Yue, W., Ismail, M., & Olsson, H. (2003). RF bandpass fitler design based on CMOS active inductors. IEEE Transactions on Circuits and Systems-II, 50(12), 942–949.

    Article  Google Scholar 

  21. Gao, Z., Yu, M., Ye, Y., & Jianguo M. (2006). A CMOS bandpass filter with wide-tuning range for wireless applications. In Proceedings ISCAS 2006 (pp. 867–870). Sinchon: ISCAS.

  22. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyer. IEEE Transaction on Circuits and Systems, 43, 82–91.

    Article  Google Scholar 

  23. Roberts, G.W., Sedra, A. S. (1999). All current-mode frequency selecting circuits. Electronic Letter, 27(12), 759–761.

    Google Scholar 

  24. Fabre, A. (2009). Electronique analogique rapide, Ellipses, Technosup (1st ed., p. 204). ISBN13: 978-2-7298-4386-1.

  25. Sedra, A., & Smith, K. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Article  Google Scholar 

  26. Sedra, A. (1989). The current conveyor: History and progress. IEEE International Symposium on Circuits and Systems, 3(8–11), 1567–1571.

    Article  Google Scholar 

  27. Fabre, A. (1983). Dual translinear voltage/current convertor. Electronics Letters, 19, 1030–1031.

    Article  Google Scholar 

  28. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1997). Low power current-mode second-order bandpass IF filter. IEEE Transactions on Circuits and Systems-II, 44(6), 436–446.

    Article  Google Scholar 

  29. Multi-Projects Website (2011). http://cmp.imag.fr. Accessed 17 March 2011.

  30. Lakys, Y., Godara, B., & Fabre, A. (2009). Cognitive and encrypted communications, part 2: A new approach to active frequency-agile filters and validation results for an agile bandpass topology in SiGe-BiCMOS. In ELECO’09 proceedings (pp. 16–29). Bursa: ELECO’09.

  31. Lakys, Y., & Fabre, A. (2010). The shadow filter, a new family of second order filters. Electronic Letters, 46(4), 276–277.

    Article  Google Scholar 

  32. Lakys, Y., & Fabre, A. (2010). Shadow filters, generalization to the nth class. Electronic Letters, 46(14), 985–986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Lakys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakys, Y., Fabre, A. Multistandard transceivers: state of the art and a new versatile implementation for fully active frequency agile filters. Analog Integr Circ Sig Process 74, 63–78 (2013). https://doi.org/10.1007/s10470-012-9861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9861-4

Keywords

Navigation