A small, low power boost regulator optimized for energy harvesting applications

  • Zachary NoskerEmail author
  • Yasunori Kobori
  • Haruo Kobayashi
  • Kiichi Niitsu
  • Nobukazu Takai
  • Takeshi Oomori
  • Takahiro Odaguchi
  • Isao Nakanishi
  • Kenji Nemoto
  • Jun-ichi Matsuda


A small, low power bootstrapped boost regulator is introduced that can start up with an input voltage of 240 mV and achieve a maximum efficiency of 97 %. The proposed circuit uses two separate control schemes for startup and steady-state operation. A fixed-frequency oscillator is used to initially start up the circuit and raise the output voltage. Once the output voltage has reached a level adequate to bias the internal circuitry, a constant-on-time style hysteretic control scheme is used, which helps increase system efficiency compared to using a conventional pulse-width-modulated control scheme. While maintaining a high efficiency, the proposed circuit only requires three external components: two capacitors (input and output) and an inductor. The effectiveness of this approach is shown through Spectre simulation results.


Energy harvesting Boost regulator CMOS Hysteretic control 


  1. 1.
    Kwon, D., Rincon-Mora, G. (2010). A single-inductor ac-dc piezoelectric energy-harvester/battery-charger ic converting ± (0.35 to 1.2 v) to (2.7 to 4.5 v). In: IEEE ISSCC Digest of Technical Papers, pp. 494–495. doi: 10.1109/ISSCC.2010.5433867.
  2. 2.
    Ramadass, Y., Chandrakasan, A. (2009). An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor. In: IEEE ISSCC Digest of Technical Papers, pp. 296–297,297a. doi: 10.1109/ISSCC.2009.4977425.
  3. 3.
    Carlson, E., Strunz, K., Otis, B. (2010). A 20 mv input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE Journal of Solid-State Circuits 45(4), 741–750 doi: 10.1109/JSSC.2010.2042251.CrossRefGoogle Scholar
  4. 4.
    Ramadass, Y., Chandrakasan, A.(2010). A batteryless thermoelectric energy-harvesting interface circuit with 35 mv startup voltage. In: IEEE ISSCC Digest of Technical Papers, pp. 486–487. doi: 10.1109/ISSCC.2010.5433835.
  5. 5.
    Doms, I., Merken, P., Mertens, R., Van Hoof, C. (2009). Integrated capacitive power-management circuit for thermal harvesters with output power 10 to 1000 μw. In: IEEE ISSCC Digest of Technical Papers, pp. 300–301,301a. doi: 10.1109/ISSCC.2009.4977427.
  6. 6.
    Dayal, R., Parsa, L. (2011). Low power implementation of maximum energy harvesting scheme for vibration-based electromagnetic microgenerators. In: Proceedings of 26th IEEE APEC, pp. 1949–1953. doi: 10.1109/APEC.2011.5744863.
  7. 7.
    Chen, P.H., Ishida, K., Zhang, X., Okuma, Y., Ryu, Y., Takamiya, M., Sakurai, T. (2010). 0.18-v input charge pump with forward body biasing in startup circuit using 65 nm cmos. In: Proceedings IEEE Custom Integrated Circuits Conference, pp. 1–4. doi: 10.1109/CICC.2010.5617444.
  8. 8.
    Rao, Y., Arnold, D. (2011). Input-powered energy harvesting interface circuits with zero standby power. In: Proceedings of 26th IEEE APEC, pp. 1992–1999. doi: 10.1109/APEC.2011.5744870.
  9. 9.
    Texas Instruments: Low input voltage synchronous boost converter with 1.3-a switches (rev. b) (2008). TPS61200 Datasheet.Google Scholar
  10. 10.
    Linear Technology: Ultralow voltage step-up converter and power manager. LTC3108 Datasheet.Google Scholar
  11. 11.
    Erickson, R.W., Maksimović, D. (2000). Fundamentals of Power Electronics, second edn. Norwell, Mass: Kluwer, pp. 24–45.Google Scholar
  12. 12.
    Kao, Y.H., Liu, C.C., Kuo, H.C. (2007). Study of front end of cmos rfid tag with inductively-coupled broadband antenna. In: Asia-Pacific microwave conference, pp. 1–4. doi: 10.1109/APMC.2007.4555011.
  13. 13.
    Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., Sakui, K. (1999). A cmos bandgap reference circuit with sub-1-v operation. IEEE Journal of Solid-State Circuits 34(5), 670–674. doi: 10.1109/4.760378.CrossRefGoogle Scholar
  14. 14.
    Gilbert, B. (1996). Monolithic voltage and current references: theme and variations, pp. 269–352. Kluwer, Norwell, MA, USA.Google Scholar
  15. 15.
    Texas Instruments (2007). Adaptive constant on-time (D-CAPTM) control study in notebook applications (2007). Accessed 23 July 2012.
  16. 16.
    Davis, S (2012). Constant on-time buck regulator ICs (2006). Electronic Design. Accessed 26 July 2012.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zachary Nosker
    • 1
    Email author
  • Yasunori Kobori
    • 1
  • Haruo Kobayashi
    • 1
  • Kiichi Niitsu
    • 7
  • Nobukazu Takai
    • 1
  • Takeshi Oomori
    • 4
  • Takahiro Odaguchi
    • 5
  • Isao Nakanishi
    • 2
  • Kenji Nemoto
    • 6
  • Jun-ichi Matsuda
    • 3
  1. 1.Department of Electronic EngineeringGunma UniversityKiryuJapan
  2. 2.AKM Technology CorporationAsakaJapan
  3. 3.Asahi Kasei Power Devices CorporationNobeokaJapan
  4. 4.AKM Technology CorporationNaka-ku, NagoyaJapan
  5. 5.AKM Technology CorporationAoba-ku, SendaiJapan
  6. 6.Asahi Kasei Microdevices CorporationsAtsugiJapan
  7. 7.Department of Electrical Engineering and Computer ScienceNagoya UniversityNagoyaJapan

Personalised recommendations