Analog Integrated Circuits and Signal Processing

, Volume 74, Issue 2, pp 491–498 | Cite as

Design of a 1.1 GSps 12 bit digital to analog convertor with 56 dBc SFDR at Nyquist frequency

  • Lei Zhou
  • Danyu Wu
  • Fan Jiang
  • Jin Wu
  • Zhi Jin
  • Xinyu Liu
Mixed Signal Letter

Abstract

High speed digital to analog convertor (DAC) is a key component in software defined radio systems, digital radars and wide band arbitrary waveform generators. In those applications, the performance of the DAC, especially the wideband dynamic range, is important in determining the system performance. In this paper we present a high speed 12 bit current steering DAC with optimized wideband performance. Theoretical analysis and optimizing strategy are present in this paper along with circuit details and measurement results. Experimental results reveal the proposed circuit is capable to operate up to 1.1 GSps. The measured spurious free dynamic range (SFDR) at low frequency is above 70 dBc at 1.1 GHz of sample rate. The SFDR is better than 56 dBc from DC to Nyquist frequency.

Keywords

Digital-to-analog converter (DAC) Spurious free dynamic range (SFDR) Wide-band GaAs HBT 

References

  1. 1.
    Van de Sande, F., Lugil, N., Demarsin, F., et al. (2012). A 7.2 GSa/s, 14 bit or 12 GSa/s, 12 bit signal generator on a chip in a 165 GHz fT BiCMOS process. IEEE Journal of Solid-State Circuit, 47(4), 1003–2290.CrossRefGoogle Scholar
  2. 2.
    Choe, M. J., Baek, K. H., & Teshome, M. (2005). A 1.6-GS/s 12-bit return-to-zero GaAs RF DAC for multiple Nyquist operation. IEEE Journal of Solid-State Circuit, 40(12), 2456–2468.CrossRefGoogle Scholar
  3. 3.
    Lin, C., & Bult, K. (1998). A 10-b, 500-Msamples/s CMOS in 0.6 mm2. IEEE Journal of Solid-State Circuit, 33(12), 1948–1958.CrossRefGoogle Scholar
  4. 4.
    Razavi, B. (1995). Priciple of data conversion system design. New York: Wiley-IEEE Press.Google Scholar
  5. 5.
    Lin, C. H., Van der Goes, F. M. L., Westra, J. R., et al. (2009). A 12 bit 2.9 GS/s DAC with IM3 < −60dBc beyond 1 GHz in 65 nm CMOS. IEEE Journal of Solid-State Circuit, 44(12), 3285–3293.CrossRefGoogle Scholar
  6. 6.
    Kuo, K. C., & Wu, C. W. (2011). A switching sequence for linear gradient error compensation in the DAC design. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(8), 502–506.CrossRefGoogle Scholar
  7. 7.
    Jewett, B., Liu, J., Poulton, K. (2005). A 1.2 GS/s 15 b DAC for precision signal generation. In: IEEE ISSCC Dig. Tech. Papers, pp. 110–112.Google Scholar
  8. 8.
    Baek, K. H., Choe, M. J., Merlo, E., & Kang, S. M. (2003). 1 GS/s, 12-bit SiGe BiCMOS D/A convertor for high-speed DDFs. Proceedings—International Symposium on Circuits and Systems, 1, 901–904.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Lei Zhou
    • 1
  • Danyu Wu
    • 1
  • Fan Jiang
    • 1
  • Jin Wu
    • 1
  • Zhi Jin
    • 1
  • Xinyu Liu
    • 1
  1. 1.Institute of Microelectronics, Chinese Academy of SciencesBeijingChina

Personalised recommendations