Skip to main content

A 54.2 μW 5 MSps 9-bit ultra-low energy analog-to-digital converter in 180 nm technology

Abstract

This paper aims to address the growing need for ultra-low power analog-to-digital converters (ADC). For this purpose, we pushed the limitations of conventional successive approximation register ADCs through the use of deep voltage scaling, a novel iterative precharging scheme, and topological improvements over recent works. From the simulations results we achieve a figure of merit of 31 fJ per conversion step, with an 8.45 effective number of bits, working at 5 MSps.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Agnes, A., Bonizzoni, E., Malcovati, P., & Maloberti, F. (2008). A 9.4-ENOB 1 V 3.8 μW 100 kS/s SAR ADC with time-domain comparator. In Proceedings of IEEE international solid-state circuits conference (ISSCC), Digest of Technical Paper, Feb (pp 246–610). San Francisco, CA, USA. doi:10.1109/ISSCC.2008.4523149.

  2. Cheon, J., & Han, G. (2008). Noise analysis and simulation method for a single-slope ADC with CDS in a CMOS image sensor. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(10), 2980–2987. doi:10.1109/TCSI.2008.923434.

    Article  MathSciNet  Google Scholar 

  3. Craninckx, J., & Van der Plas, G. (2007). A 65 fJ/conversion-step 0-to-50 MS/s 0-to-0.7 mW 9b charge-sharing SAR ADC in 90 nm digital CMOS. In Proceedings of IEEE international solid-state circuits conference (ISSCC), Digest of Technical Paper, Feb (pp 246–600). San Francisco, CA, USA. doi:10.1109/ISSCC.2007.373386.

  4. De Venuto, D., Castro, D. T., Ponomarev, Y., & Stikvoort, E. (2010). 0.8 μW 12-Bit SAR ADC sensors interface for RFID applications. Microelectronics Journal, 41, 746–751. doi:10.1016/j.mejo.2010.06.019.

    Article  Google Scholar 

  5. Garcia-Montesdeoca, J., Montiel-Nelson, J., & Nooshabadi, S. (2009). High performance bootstrapped CMOS dual supply level shifter for 0.5 V input and 1 V output. In Proceedings of 12th Euromicro conference on digital system design, architectures, methods and tools, DSD, Aug (pp 311–314). Patras, Greece. doi:10.1109/DSD.2009.180.

  6. Harpe, P., Zhou, C., Wang, X., Dolmans, G., & de Groot, H. (2010). A 30 fJ/conversion-step 8b 0-to-10 MS/s asynchronous SAR ADC in 90 nm CMOS. In Proceedings of IEEE international solid-state circuits conference (ISSCC), Digest of Technical Paper, Feb (pp 388–389). San Francisco, CA, USA. doi:10.1109/ISSCC.2010.5433967.

  7. Kim, J., Leibowitz, B., Ren, J., & Madden, C. (2009). Simulation and analysis of random decision errors in clocked comparators. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(8), 1844–1857. doi:10.1109/TCSI.2009.2028449.

    Article  MathSciNet  Google Scholar 

  8. Lee, S. K., Park, S. J., Suh, Y., Park, H. J., & Sim, J. Y. (2009). A 1.3 μW 0.6 V 8.7-ENOB successive approximation ADC in a 0.18 μm CMOS. In Symposium on VLSI circuits (pp 242–243).

  9. Nuzzo, P., De Bernardinis, F., Terreni, P., & Van der Plas, G. (2008). Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(6), 1441–1454. doi:10.1109/TCSI.2008.917991.

    Article  MathSciNet  Google Scholar 

  10. Rabaey, J. (2009). Low power design essentials (1st ed.). New York, NY: Springer Publishing Company, Incorporated.

    Book  Google Scholar 

  11. Scott, M., Boser, B., & Pister, K. (2003). An ultra low-energy ADC for smart dust. IEEE Journal of Solid-State Circuits, 38(7), 1123–1129. doi:10.1109/JSSC.2003.813296.

    Article  Google Scholar 

  12. Svensson, L. J., & Koller, J. (1994). Adiabatic charging without inductors. In Proceedings of international workshop on low-power design, April (pp 159–164). Napa, CA, USA.

  13. van Elzakker, M., van Tuijl, E., Geraedts, P., Schinkel, D., Klumperink, E., & Nauta, B. (2008). A 1.9 μW 4.4 fJ/conversion-step 10b 1 MS/s charge-redistribution ADC. In Proceedings of IEEE international solid-state circuits conference (ISSCC), Digest of Technical Paper, Feb (pp 244–610). San Francisco, CA, USA. doi:10.1109/ISSCC.2008.4523148.

  14. Verma, N., & Chandrakasan, A. (2007) An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE Journal of Solid-State Circuits, 42(6), 1196–1205. doi:10.1109/JSSC.2007.897157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Nooshabadi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rabuske, T.G., Nooshabadi, S. & Rodrigues, C.R. A 54.2 μW 5 MSps 9-bit ultra-low energy analog-to-digital converter in 180 nm technology. Analog Integr Circ Sig Process 72, 37–46 (2012). https://doi.org/10.1007/s10470-011-9821-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9821-4

Keywords

  • SAR ADC
  • Ultra-low power
  • Ultra-low energy
  • Step-wise
  • Charge sharing