Skip to main content

Polyphase analysis filter bank down-converts unequal channel bandwidths with arbitrary center frequencies

Abstract

A cognitive radio (CR) receiver should be able to filter and simultaneously down convert multiple signals having arbitrary bandwidths and randomly located center frequencies. In this paper we present an efficient structure, based on polyphase filter banks, for CR receivers. Its core, an analysis channelizer, is a variant of the standard M-path polyphase down converter channelizer. It is able to perform M/2-to-1 down sampling of the input time series while it shifts, by aliasing, all the M channels to base-band. A perfect reconstruction (PR) filter is selected as low-pass prototype for avoiding energy losses during the signal processing. A post analysis block is designed for extracting, when necessary, from the base-band aliased channels, the spectra, or their fragments, belonging to different signals. A selector commutes the output ports of the post analysis block that contain spectral fragments of the same bandwidths and properly delivers them to the up converter synthesis channelizers that reassemble them. The synthesis channelizers are Pn-path polyphase up converter modified for performing 1-to-Pn/2 up sampling of the input time series. Complex frequency rotators, placed at the output of the synthesizers, compensate the frequency offsets, applied in the transmitter, that are responsible for the arbitrary center frequency positioning of the received signals. At the end of the receiver chain, arbitrary interpolators resample the base-band centered signals to obtain two samples per symbol needed for the further processing stages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Harris, F., Dick, C., & Rice, M. (2003). Digital receivers and transmitters using polyphase filter banks for wireless communications. Special Issue of Microwave Theory and Techniques MTT, 51(4), 1395–1412.

    Article  Google Scholar 

  2. 2.

    Buracchini, E. (2000). The software radio concept. IEEE Communications Magazine, 38(9), 138–143.

    Article  Google Scholar 

  3. 3.

    Harris, F., & Lowdermilk, W. (2010). Software defined radio: A tutorial. IEEE Instrumentation and Measurement Magazine, 5(3), 324–332.

    Google Scholar 

  4. 4.

    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless neworks: A survey. Computer Networks Journal (Elsevier), 50, 2127–2159.

    MATH  Article  Google Scholar 

  5. 5.

    Wang, B., & Ray Liu, K. J. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Google Scholar 

  6. 6.

    Sahai, A., Mishra, S. M., Tandra, R., & Woyach, K. A. (2009). Cognitive radios for spectrum sharing. IEEE Signal Processing Magazine, 26(1), 140–146.

    Article  Google Scholar 

  7. 7.

    Ulversøy, T. (2010). Software defined radio: Challenges and opportunities. IEEE Communications Survey and Tutorials, 12(4), 531–550. Fourth Quarter.

    Article  Google Scholar 

  8. 8.

    Bagheri, R., Mirzaei, A., & Heidari, M. E. (2006). Software-defined radio receiver: Dream to reality. IEEE Communication Magazine, 44(8), 111–118.

    Article  Google Scholar 

  9. 9.

    Sherman, M., Rodriguez, C., & Reddy, R. (2008). IEEE supporting cognitive radio and networks, dynamic spectrum access, and coexistence. IEEE Communication Magazine, 46(7), 72–79.

    Article  Google Scholar 

  10. 10.

    Ma, J., Li, G. Y., & Juang, B. H. (2009). Signal processing in cognitive radio. Proceedings of IEEE, 97(7), 805–823.

    Google Scholar 

  11. 11.

    Mitola, J. (2009). Cognitive radio architecture evolution. Proceedings of IEEE, 97(4), 626–641.

    Article  Google Scholar 

  12. 12.

    Tandra, R., Mishra, S. M., & Sahai, A. (2009). What is a spectrum hole and what does it take to recognize one? Proceedings of IEEE, 97(5), 824–848.

    Article  Google Scholar 

  13. 13.

    Harris, F., Dick, C., Chen, X., & Venosa, E. (2010). M-path channelizer with arbitrary center frequency assignments. WPMC 2010, Recife, Brazil, October 11–14, 2010.

  14. 14.

    Eghbali, A., Johansson, H., & Löwenborg, P. (2010). Reconfigurable nonuniform transmultiplexers based on uniform filter banks. In Proceedings of IEEE International Symposium on Circuits and Systems, Paris, France.

  15. 15.

    Liu, T., & Chen, T. (2001). Design of multichannel nonuniform transmultiplexers using general building blocks. The IEEE Transaction on Signal Process, 49(1), 91–99.

    Article  Google Scholar 

  16. 16.

    Eghbali, A., Johansson, H., Löwenborg, P., & Göckler, H. G. (2009). Flexible dynamic frequency-band reallocation and allocation: From satellite-based communication systems to cognitive radios. Journal of Signal Processing Systems, 62(2), 187–203.

    Google Scholar 

  17. 17.

    Eghbali, A., Johansson, H., & Löwenborg, P. (2008). A multimode transmultiplexer structure. The IEEE Transactions on Circuits and Systems Part II, 55(3), 279–283.

    Article  Google Scholar 

  18. 18.

    Venosa, E., Chen, X., & Harris, F. (2010). Polyphase analysis filter bank down-converts unequal channel bandwidths with arbitrary center frequencies-design I. In SDR 2010, Washington, DC, December.

  19. 19.

    Harris, F. J. (2004). Multirate signal processing for communication systems (pp. 127–142). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  20. 20.

    Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  21. 21.

    Chen, X., Venosa, E., & Harris, F. (2010). Polyphase synthesis filter bank up-converts unequal channel bandwidths with arbitrary center frequencies-design II. In SDR 2010, Washington, DC, December.

  22. 22.

    Harris, F. (2010). Polyphase filter bank for unequal channel bandwidths and arbitrary center frequencies. In SDR 2010, Washington, DC, December.

  23. 23.

    Harris, F. J., & Dick, C. (2003). A modified polyphase transform with embedded fractional sample rate change. In International signal processing conference, Dallas, Texas, March 31–April 3, 2003.

  24. 24.

    Harris, F. J., & Dick, C. (2002). Performing simultaneous arbitrary spectral translation, and sample rate change in polyphase interpolating or decimating filters in transmitters and receivers. In Software defined radio conference, 2002, San Diego, California, November 11–12, 2002.

  25. 25.

    Harris, F., Dick, C., Chen, X., & Venosa, E. (2010). Wideband 160 channel polyphase filter bank cable TV channelizer. IET Signal Processing (Submitted).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elettra Venosa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harris, F., Venosa, E., Chen, X. et al. Polyphase analysis filter bank down-converts unequal channel bandwidths with arbitrary center frequencies. Analog Integr Circ Sig Process 71, 481–494 (2012). https://doi.org/10.1007/s10470-011-9746-y

Download citation

Keywords

  • Polyphase filters
  • Polyphase down converter channelizer
  • Cognitive radio
  • Software radio