Instructions and hardware designs for accelerating SNOW 3G on a software-defined radio platform



Software-defined radio (SDR) is a new technology transitioning from research into commercial markets. SDR moves hardware-dominant baseband processing of multiple wireless communication protocols into software on a single chip. New cellular standards, such as HSPA+, LTE, and LTE+, require speeds in excess of 40 Mbps. SNOW 3G is a new stream cipher approved for use in these cellular protocols. Running SNOW 3G in software on our SDR platform provides a throughput of 19.1 Mbps per thread for confidentiality and 18.3 Mbps per thread for integrity. To have secure cellular communications in SDR platforms for these new protocols, the performance of security algorithms must be improved. This paper presents instruction set architecture (ISA) extensions and hardware designs for cellular confidentiality and integrity algorithms using SNOW 3G. Our ISA extensions and hardware designs are evaluated for the Sandbridge Sandblaster 3011 (SB3011) SDR platform. With our new SNOW 3G instructions, the performance of confidentiality and integrity improve by 70 and 2%, respectively. For confidentiality, power consumption increased by 2%, while energy decreased by 40%. For integrity, power consumption remained consistent, while energy decreased by 2%.


Cryptography Software-defined radio Computer architecture SNOW 3G Cellular security 


  1. 1.
    Mehta, M., Drew, N., Vardoulias, G., Greco, N., & Niedermeier, C. (2001). Reconfigurable terminals: an overview of architectural solutions. IEEE Communications Magazine, 39, 82–89.CrossRefGoogle Scholar
  2. 2.
    Mamidi, S., Blem, E. R., Schulte, M. J., Glossner, J., Iancu, D., Iancu, A., Moudgill, M., & Jinturkar, S. (2005). Instruction set extensions for software defined radio on a multithreaded processor. In Proceedings of the 2005 international conference on compilers, architectures and synthesis for embedded systems (pp. 266–273).Google Scholar
  3. 3.
    ETSI/SAGE. (2006). Specification of the 3GPP confidentiality and integrity algorithms UEA2 & UIA2. Document 2: SNOW 3G specification.
  4. 4.
    Jenkins, C., Schulte, M., & Glossner, J. (2011). Instruction set extensions for accelerating SNOW 3G on a multithreaded software defined radio platform. In Proceedings of the SDR ‘10 technical conference and product exposition (pp. 94–100). Arlington, VA.Google Scholar
  5. 5.
    ETSI/SAGE. (2006). Specification of the 3GPP confidentiality and integrity algorithms UEA2 & UIA2. Document 5: Design and evaluation report.Google Scholar
  6. 6.
    3rd Generation Partnership Project. (2010). 3G security: Security architecture. Technical Report. 3GPP TS 33.102.Google Scholar
  7. 7.
    Balderas, T., Cumplido, R., Cumplido-parra, R. A., Computacionales, C. D. C., Erro, L. E., & Balderas-contreras, T. (2004). Security architecture in UMTS third generation cellular networks.Google Scholar
  8. 8.
    3rd Generation Partnership Project. (2009). Cryptographic algorithm requirements.
  9. 9.
    Elliptics. CLP-41: SNOW 3G cipher core.
  10. 10.
    IP Cores, Inc. SNOW 3G LTE cipher.
  11. 11.
    Orhanou, G., El Hajji, S., & Bentaleb, Y. (2010). SNOW 3G stream cipher operation and complexity study. Contemporary Engineering Sciences-Hikari Ltd, 3, 97–111.Google Scholar
  12. 12.
    Kitsos, P., Selimis, G., & Koufopavlou, O. (2008). A high performance ASIC implementation of the SNOW 3G stream cipher. In Proceedings of the 16th international conference on very large scale integration (VLSI-SoC 2008).Google Scholar
  13. 13.
    Hessel, S., Szczesny, D., Lohmann, N., Bilgic, A., & Hausner, J. (2009). Implementation and benchmarking of hardware accelerators for ciphering in LTE terminals. In Proceedings of the 28th IEEE conference on global telecommunications (pp. 2316–2322).Google Scholar
  14. 14.
    Traboulsi, S., Sbeiti, M., Bruns, F., Hessel, S., & Bilgic, A. (2010). An optimized parallel and energy-efficient implementation of SNOW 3G for LTE mobile devices. In Proceedings of the 12th IEEE international conference on communication technology (pp. 536–539). Nanjing, China.Google Scholar
  15. 15.
    Glossner, J., Jinturkar, S., Moudgill, M., Hokenek, E., Schulte, M., & Vassiliadisols, S. (2005). Sandbridge software tools. Embedded Computer Systems: Architectures, Modeling, Simulation, 3553, 269–278.CrossRefGoogle Scholar
  16. 16.
    ETSI/SAGE. (2006). Specification of the 3GPP confidentiality and integrity algorithms UEA2 & UIA2. Document 4: Design conformance test data.
  17. 17.
    Meyer, B. H., Pieper, J. J., Paul, J. M., Nelson, J. E., Pieper, S. M., & Row, A. G. (2005). Power-performance simulation and design strategies for single-chip heterogeneous multiprocessors. IEEE Transactions on Computers, 54, 684–697.Google Scholar
  18. 18.
    Glossner, J., Iancu, D., Moudgill, M., Nacer, G., Jinturkar, S., & Schulte, M. (2006). The sandbridge SB3011 SDR platform. In Symposium on trends in communications (SympoTIC’06), Invited Keynote. Bratislava, Slovakia.Google Scholar
  19. 19.
    Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., et al. (2007). SODA: A high-performance DSP architecture for software-defined radio. IEEE Micro, 27, 114–123.CrossRefGoogle Scholar
  20. 20.
    Moudgill, M., Glossner, J., Agrawal, S., & Nacer, G. (2008). The sandblaster 2.0 architecture and SB3500 implementation. In Proceedings at the software defined radio technical forum (pp. 2–5).Google Scholar
  21. 21.
    Ramacher, U. (2007). Software-defined radio prospects for multistandard mobile phones. Computer-IEEE Computer Society, 40, 62–69.Google Scholar
  22. 22.
    Tell, E., Nilsson, A., & Liu, D. (2005). A programmable DSP core for baseband processing. In The 3rd international IEEE-NEWCAS conference (pp. 403–406).Google Scholar
  23. 23.
    van Berkel, K., Heinle, F., Meuwissen, P. P. E., Moerman, K., & Weiss, M. (2005). Vector processing as an enabler for software-defined radio in handheld devices. EURASIP Journal on Applied Signal Processing, 16, 2613–2625.Google Scholar
  24. 24.
    Woh, M., Seo, S., Mahlke, S., Mudge, T., & Chakrabarti, C. (2009). AnySP: Anytime anywhere anyway signal processing. In Proceedings of the 36th international symposium on computer architecture (ISCA) (pp. 128–139). Austin, Texas, USA, June 2009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chris Jenkins
    • 1
  • Michael Schulte
    • 1
    • 2
  • John Glossner
    • 3
  1. 1.Department of ECEUniversity of Wisconsin—MadisonMadisonUSA
  2. 2.AMD, Inc. AMD ResearchAustinUSA
  3. 3.Optimum Semiconductor Technologies, Inc.TarrytownUSA

Personalised recommendations