Skip to main content
Log in

A SiGe BiCMOS 24-GHz receiver front-end for automotive short-range radar

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a fully integrated SiGe BiCMOS 24-GHz receiver front-end implemented for a ultra-wideband automotive short-range radar sensor. The circuit consists of a homodyne I/Q down-converter and a 24-GHz synthesizer. The receiver front-end is able to achieve a power conversion gain as high as 30 dB and a 6-dB noise figure, while preserving high linearity performance thanks to a 1-bit gain control. The frequency synthesizer, which also includes an on-chip loop filter, guarantees a phase noise of −104 dBc/Hz at 1-MHz offset from the 24.125-GHz carrier and a 4.7-GHz tuning range from 20.4 to 25.1 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gresham et al. (2006). A fully integrated 24 GHz SiGe receiver chip in a low-cost QFN plastic package. In IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 2006, pp. 371-374.

  2. Krishnaswamy, H., & Hashemi, H. (2007). A fully integrated 24 GHz 4-channel phased-array transceiver in 0.13 μm CMOS based on a variable-phase ring oscillator and PLL architecture. In ISSCC Dig. Tech. Papers, Feb. 2007, pp. 124-125.

  3. Mazzanti, A., Sosio, M., Repossi, M., & Svelto, F. (2008). A 24 GHz sub-harmonic receiver front-end with integrated multi-phase LO generation in 65 nm CMOS. In ISSCC Dig. Tech. Papers, Feb. 2008, pp. 216–217.

  4. Scuderi, A., Ragonese, E., & Palmisano, G. (2008). 0.13-μm SiGe BiCMOS radio front-end circuits for 24-GHz automotive short-range radar sensors,” in Proc. IEEE European Solid-State Circuit Conference, Sep. 2008, pp. 494–497.

  5. Saunders, D., et al. (2009). A single-chip 24 GHz BiCMOS transceiver for FMCW automotive radars. In IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 2009, pp. 459–462.

  6. Razavi, B. (2009). Design of millimeter-wave CMOS radios: A tutorial. IEEE Transactions on Circuits Systems I, 56, 4–16.

    Article  MathSciNet  Google Scholar 

  7. Scuderi, A., Ragonese, E., & Palmisano, G. (2009). 24-GHz ultra-wideband transmitter for vehicular short-range radar applications. IET Circuits Devices System, 3, 313–321.

    Article  Google Scholar 

  8. Issakov, V., Siprak, D., Tiebout, M., Thiedel, A., Simburger, W., & Maurer, L. (2009). Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS. IET Circuits Devices System, 3, 340–349.

    Article  Google Scholar 

  9. Ragonese, E., Scuderi, A., Giammello, V., Messina, E., & Palmisano, G. (2009). A fully integrated 24 GHz UWB radar sensor for automotive applications. In ISSCC Dig. Tech. Papers, Feb. 2009, pp. 306-307.

  10. Kaukovuori, J., Stadius, K., Ryynänen, J., & Halonen, K. A. I. (2008). Analysis and design of passive polyphase filters. IEEE Transactions on Circuits Systems I, 55, 3023–3037.

    Article  Google Scholar 

  11. Notten, M. G. M., & Veenstra, H. (2008). 60 GHz quadrature signal generation with a single phase VCO and polyphase filter in a 0.25 μm SiGe BiCMOS technology. In Proc IEEE Bipolar/BiCMOS Circuits Technol. Meeting, pp. 178-181, Oct. 2008.

  12. Carrara, F., Italia, A., Ragonese, E., & Palmisano, G. (2006). Design methodology for the optimization of transformer-loaded RF circuits. IEEE Transactions on Circuits Systems I, 53, 761–768.

    Article  Google Scholar 

  13. Scuderi, A., Biondi, T., Ragonese, E., & Palmisano, G. (2004). A lumped scalable model for silicon integrated spiral inductors. IEEE Transactions on Circuits Systems I, 51, 1203–1209.

    Article  Google Scholar 

  14. Ragonese, E., Scuderi, A., Biondi, T., & Palmisano, G. (2009). Scalable lumped modeling of single-ended and differential inductors for RF IC design. Wiley International Journal of RF and Microwave Computer-Aided Engineering, 19, 110–119.

    Article  Google Scholar 

  15. Copani, T., Smerzi, S. A., Girlando, G., & Palmisano, G. (2005). A 12-GHz silicon bipolar dual-conversion receiver for digital satellite applications. IEEE Journal of Solid-State Circuits, 40, 1278–1287.

    Article  Google Scholar 

  16. Scuderi, A., Biondi, T., Ragonese, E., & Palmisano, G. (2005). Analysis and modeling of thick-metal spiral inductors on silicon. In Proc. IEEE European Microwave Conference, Oct. 2005, pp. 81-84.

  17. Biondi, T., Scuderi, A., Ragonese, E., & Palmisano, G. (2005). Sub-nH inductor modeling for RF IC design. IEEE Microwave and Wireless Components Letters, 15, 922–924.

    Article  Google Scholar 

  18. Tretiakov, Y., Groves, R., Rascoe, J., Mathis, C., & Foley, B. (2004). Improved modeling accuracy of thick metal passive SiGe/BiCMOS components for UWB using ADS momentum. In IEEE Radio Frequency Integrated Circuits Symp. Dig. Jun. 2004, pp. 461-464.

  19. Ragonese, E., & Palmisano, G. (2009). Design of a SiGe BiCMOS low-noise amplifier for 24-GHz UWB automotive radar. European Agilent Technologies ADS Users’ Group Meeting, Rome, May, 2009, available on line at http://www.home.agilent.com/upload/cmc_upload/All/RagoneseEuropeanADSMeetingweb.pdf.

  20. Laurens, M., et al. (2003). A 150 GHz f T/f max 0.13 μm SiGe:C BiCMOS technology. In Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meeting, Oct. 2003, pp. 199-202.

Download references

Acknowledgment

The authors would like to thank Alessandro Castorina, STMicroelectronics, Catania, Italy, for his valuable assistance with measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio Ragonese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragonese, E., Scuderi, A., Giammello, V. et al. A SiGe BiCMOS 24-GHz receiver front-end for automotive short-range radar. Analog Integr Circ Sig Process 67, 121–130 (2011). https://doi.org/10.1007/s10470-010-9549-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9549-6

Keywords

Navigation