Skip to main content
Log in

A LINC-based polar transmitter with reduced envelope bandwidth for wideband communications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a polar transmitter with reduced envelope bandwidth and the linear amplifier with nonlinear components (LINC) technique is used to produce constant-envelope signals according to the remaining envelope information. This architecture relaxes the bandwidth requirement for the traditional envelope modulators. Only the low-frequency part of the envelope signal is amplified to provide power supply for the power amplifier (PA) stage. In the LINC path, the remaining envelope information is modulated into the phase signals, which are used as the radio frequency (RF) input to the nonlinear PA pair. At the RF output, the envelope information is retrieved from these two parts by the supply-modulated PA pair. The simulation results show that the envelope bandwidth is reduced to around one third of the original bandwidth by the proposed technique. For 2-level LINC structures, the combining efficiency of the proposed architecture is improved to more than twice as the one of LINC-only structure since the combining angles are reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In order to ensure \(\phi_2\leq \frac{\pi}{2}, \frac{r_0-r_1}{2}\) should be replaced by \(\sqrt{\left(\frac{r_0}{2}\right)^2-\left(\frac{r_1}{2}\right)^2}\).

References

  1. Raab, F. H., Asbeck, P., Cripps, S., Kenington, P. B., Popovic, Z. B., Pothecary, N., Sevic, J. F., & Sokal, N. O. (2002). Power amplifiers and transmitters for RF and microwave. IEEE Transactions on Microwave Theory And Techniques, 50(3), 814–826. Invited paper.

    Google Scholar 

  2. Sowlati, T. R. (2004). Quad-band GSM/GPRS/EDGE polar loop transmitter. IEEE Journal of Solid-State Circuits, 39(12), 2179–2189.

    Article  Google Scholar 

  3. Cripps, S. (2006). RF power amplifiers for wireless communications. Norwood, MA: Artech House Inc.

    Google Scholar 

  4. Su, D., & McFarland, W. J. (1998). An IC for linearizing RF power amplifiers using envelope elimination and restoration. IEEE Journal of Solid-State Circuits, 33, 2252–2258.

    Article  Google Scholar 

  5. Walker, G. R. (2003). A class B switch-mode assisted linear amplifier. IEEE Transaction on Power Electronics, 18(16), 1278–1285.

    Article  Google Scholar 

  6. Elliott, M. R., Montalvo, T., Jeffries, B. P., Murden, F., Strange, J., Hill, A., Nandipaku, S., & Harrebek, J. (2004). A polar modulator transmitter for GSM/EDGE. IEEE Journal of Solid-State Circuits, 39(12), 2190–2199.

    Article  Google Scholar 

  7. Wang, F., Yang, A. H., Kimball, D. F., Larson, L. E., & Asbeck, P. M. (2005). Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1244–1255.

    Article  Google Scholar 

  8. Wang, F., Kimball, D. F., Popp, J. D., Yang, A. H., Lie, D. Y., Asbeck, P. M., & Larson, L. E. (2006). An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4086–4099.

    Article  Google Scholar 

  9. Kavousian, A., Su, D. K., Hekmat, M., Shirvani, A., & Wooley, B. A. (2008). A digitally modulated polar CMOS power amplifier with a 20-MHz channel bandwidth. IEEE Journal of Solid-State Circuits, 43(10), 2251–2258.

    Article  Google Scholar 

  10. Presti, C. D., Carrara, F., Scuderi, A., Asbeck, P. M., & Palmisano, G. (2009). A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control. IEEE Journal of Solid-State Circuits, 44(7), 1883–1896.

    Article  Google Scholar 

  11. Wang, F., Ojo, A., Kimball, D., Asbeck, P., & Larson, L. (2004). Envelope tracking power amplifier with pre-distortion linearization for WLAN 802.11g. In IEEE MTT-S international microwave symposium digest (Vol. 3, pp. 1543–1546).

  12. Kwak, T.-W., Lee, M.-C., & Cho, G.-H. (2007). A 2 W CMOS hybrid switching amplitude modulator for EDGE polar transmitters. IEEE Journal of Solid-State Circuits, 42(12), 2666–2676.

    Article  Google Scholar 

  13. Chu, W.-Y., Bakkaloglu, B., & Kiaei, S. (2008). A 10 MHz bandwidth, 2 mV ripple PA regulator for CDMA transmitters. IEEE Journal of Solid-State Circuits, 43(12), 2809–2819.

    Article  Google Scholar 

  14. Shrestha, R., van der Zee, R., de Graauw, A., & Nauta, B. (2009). A wideband supply modulator for 20 MHz RF bandwidth polar PAs in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 44(4), 1272–1280.

    Article  Google Scholar 

  15. Jeong, J., Kimball, D. F., Kwak, M., Hsia, C., Draxler, P., & Asbeck, P. M. (2009). Wideband envelope tracking power amplifiers with reduced bandwidth power supply waveforms and adaptive digital predistortion techniques. IEEE Transactions on Microwave Theory and Techniques, 57(12), 3307–3314.

    Article  Google Scholar 

  16. Jheng, K.-Y., Chen, Y.-J., & Wu, A.-Y. (2009). Multilevel LINC system designs for power efficiency enhancement of transmitters. IEEE Journal of Selected Topics in Signal Processing, 3(3), 523–532.

    Article  Google Scholar 

  17. Chung, S., Godoy, P. A., Barton, T. W., Huang, E. W., Perreault, D. J., & Dawson, J. L. (2009). Asymmetric multilevel outphasing architecture for multi-standard transmitters (pp. 237–240).

  18. Hur, J., Lee, O., Kim, K., Lim, K., & Laskar, J. (2009). Highly efficient uneven multi-level LINC transmitter. Electronics Letters, 45(16), 837–838.

    Article  Google Scholar 

  19. Diet, A., Villegas, M., & Baudoin, G. (2008). EER-LINC RF transmitter architecture for high PAPR signals using switched power amplifiers. Physical Communication, 1(4), 248–254.

    Article  Google Scholar 

  20. Rembold, B., & Koch, O. (2006). CLIER-combination of LINC and EER method. Electronics Letters, 42(16), 900–901.

    Article  Google Scholar 

  21. Birafane, A., & Kouki, A. B. (2004). On the linearity and efficiency of outphasing microwave amplifiers. IEEE Transactions on Microwave Theory and Techniques, 52(7), 1702–1708.

    Article  Google Scholar 

  22. Razavi B. (1998). RF microelectronics. NJ, USA: Prentice Hall.

    Google Scholar 

  23. Choi, J., Kim, D., Kang, D., & Kim, B. (2009). A polar transmitter with CMOS programmable hysteretic-controlled hybrid switching supply modulator for multistandard applications. IEEE Transactions on Microwave Theory and Techniques, 57(7), 1675–1686.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from Danish Agency for Science Technology and Innovation, and Nokia Siemens Networks, Denmark A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Larsen, T. A LINC-based polar transmitter with reduced envelope bandwidth for wideband communications. Analog Integr Circ Sig Process 66, 315–322 (2011). https://doi.org/10.1007/s10470-010-9537-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9537-x

Keywords

Navigation