Analog Integrated Circuits and Signal Processing

, Volume 66, Issue 2, pp 145–154 | Cite as

A low-voltage low-power injection-locked oscillator for wearable health monitoring systems

Article

Abstract

This paper reports a low-voltage low-power injection-locked oscillator suitable for short range wireless transmitter applications in a wireless body area network (WBAN). Low-power transmitter with high efficiency is a major design challenge for short range wireless communication. Unlike conventional transmitters used for cellular communication, injection-locked transmitter shows reduced power consumption and high transmitter efficiency. The core block of an injection-locked transmitter is an injection-locked oscillator. In this work a low-voltage low-power injection-locked LC oscillator has been designed and fabricated employing self-cascode structure and body-terminal coupling. The proposed oscillator has been realized using 0.18-μm RF CMOS process. Experimental results indicate that the prototype oscillator can operate with a supply voltage as low as 0.9 V and consumes only 1.4 mW of power. The relatively low-voltage and low-power operation of the design makes it highly suitable for low-power transmitter applications.

Keywords

Low-power transmitter Injection-locked oscillator Self-cascode structure Body coupling 

References

  1. 1.
    Dupire, T., Tanguay, L. F., & Sawan, M. (2006). Low power CMOS transmitter for biomedical sensing devices. 13th IEEE International Conference on Electronics, Circuits and Systems (pp. 339–342).Google Scholar
  2. 2.
    Chee, Y. H., Niknejad, A. M., & Rabaey, J. M. (2006). An ultra-low-power injection-locked transmitter for wireless sensor networks. IEEE Journal of Solid State Circuits, 41(8), 1740–1748.CrossRefGoogle Scholar
  3. 3.
    Porret, A.-S., Melly, T., Vittoz, E. A., & Enz, C. C. (2000). Tradeoffs and design of an ultra low power UHF transceiver in a standard digital CMOS process. Proceedings of the 2000 International Symposium on Low Power Electronics and Design (pp. 273–278), Rapallo, Italy.Google Scholar
  4. 4.
    Choi, P., Park, H., Nam, L., Kang, K., Ku, Y., Shin, S., Park, S., Kim, T., Choi, H., Kim, S., Min, S., Kim, M., Park, S., & Lee, K. (2003). An experimental coin-sized radio for extremely low power WPAN (IEEE 802.15.4) application at 2.4 GHz. Digest of Technical Papers, 2003 International Solid State Circuits Conference (ISSCC) (pp. 92–93).Google Scholar
  5. 5.
    Molnar, A. et al. (2004). An ultra-low power 900 MHz RF transceiver for wireless sensor networks. IEEE CICC (pp. 401–404).Google Scholar
  6. 6.
    Tanguay, L.-F., & Sawan, M. (2009). An ultra-low power ISM-band integer-N frequency synthesizer dedicated to implantable medical Microsystems. Analog Integrated Circuits and Signal Processing, 58, 205–214.CrossRefGoogle Scholar
  7. 7.
    Hajimiri, A., & Lee, T. H. (1999). The design of low noise oscillators. Norwell, MA: Kluwer.Google Scholar
  8. 8.
    Rofougaran, A., Chang, G., Rael, J. J., Chang, Y.-C., Rofougaran, M., Chang, P. J., et al. (1998). A single-chip 900 MHz spread-spectrum wireless transceiver in 1 μm CMOS—part I: architecture and transmitter design. IEEE Journal of Solid State Circuits, 33, 515–534.CrossRefGoogle Scholar
  9. 9.
    Tiebout, M. (2001). Low power low phase noise differentially tuned quadrature VCO design in standard CMOS. IEEE Journal of Solid State Circuits, 36, 1018–1024.CrossRefGoogle Scholar
  10. 10.
    Andreani, P., Bonfanti, A., Romano, L., & Samori, C. (2002). Analysis and design of a 1.8 GHz CMOS LC quadrature VCO. IEEE Journal of Solid State Circuits, 37, 1737–1747.CrossRefGoogle Scholar
  11. 11.
    Kim, H.-R., Cha, C.-Y., Oh, S.-M., Yang, M.-S., & Lee, S.-G. (2004). A very low-power quadrature VCO with back-gate coupling. IEEE Journal of Solid State Circuits, 39(6), 952–955.CrossRefGoogle Scholar
  12. 12.
    Thierry, T., Jean-Baptiste, B., Hervé, L., & Yann, D. (2006). RF CMOS body-effect circuits. Microelectronics Journal, 37(11), 1251–1260.CrossRefGoogle Scholar
  13. 13.
    Ahmed, H., De Vries, C., & Mason, R. (2003). A Digitally Tuned 1.1 GHz Subharmonic Injection-Locked VCO in 0.18 μm CMOS. Proceedings of the 29th European Solid-State Circuit Conference (pp. 81–84).Google Scholar
  14. 14.
    Hsieh, H.-H., & Lu, L.-H. (2006). A low-phase-noise K-band CMOS VCO. IEEE Microwave and Wireless Components Letters, 10(10), 552–554.CrossRefGoogle Scholar
  15. 15.
    Li, X., Shekhar, S., & Allstot, D. (2005). Gm-boosted common gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS. IEEE Journal of Solid State Circuits, 40(12), 2609–2619.CrossRefGoogle Scholar
  16. 16.
    Wang, T.-P., Chang, C.-C., Liu, R.-C., Tsai, M.-D., Sun, K.-J., Chang, Y.-T., et al. (2006). A low-power oscillator mixer in 0.18-μm CMOS Technology. IEEE Transactions on Microwave Theory and Techniques, 54(1), 88–95.CrossRefGoogle Scholar
  17. 17.
    Deen, M. J., Murji, R., Fakhr, A., Jafferali, N., & Ngan, W. L. (2005). Low-power CMOS integrated circuits for radio frequency applications. IEEE Proceedings of Circuits Devices Systems, 152(5), 509–521.CrossRefGoogle Scholar
  18. 18.
    Lee, C.-C., Chuang, H.-R., & Lu, C.-L. (2007). A 16-GHz CMOS differential Colpitts VCO for DS-UWB and 60-GHz direct conversion receiver applications. Microwave and Optical Technology Letters, 49(10), 2489–2491.CrossRefGoogle Scholar
  19. 19.
    Hsieh, H.-H., & Lu, L.-H. (2007). A high-performance CMOS voltage controlled oscillator for ultra-low-voltage operations. IEEE Transactions on Microwave Theory and Techniques, 55(3), 467–473.CrossRefGoogle Scholar
  20. 20.
    Hsieh, H.-H., Chung, K.-S., & Lu, L.-H. (2005). Ultra-low-voltage mixer and VCO in 0.18-μm CMOS. IEEE RFIC Symposium (pp. 167–170).Google Scholar
  21. 21.
    Tsai, M.-D., Cho, Y.-H., & Wang, H. (2005). A 5-GHz low phase noise differential Colpitts CMOS VCO. IEEE Microwave and Wireless Components Letters, 15(5), 327–329.CrossRefGoogle Scholar
  22. 22.
    Choi, T.-Y., Lee, H., Katehi, L. P. B., & Mohammadi, S. (2005). A low phase noise 10 GHz VCO in 0.18-μm CMOS process. 2005 European Microwave Conference (Vol. 3, pp. 4).Google Scholar
  23. 23.
    Mostafa, A. H., & El-Gamal, M. N. (2001). A CMOS VCO architecture for sub-1 volt high frequency (8.7–10 GHz) RF applications. 2004 International Symposium of Low Power Electronics and Design (pp. 247–250).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Engineering ScienceSonoma State UniversityRohnert ParkUSA
  2. 2.Department of Electrical Engineering and Computer ScienceThe University of TennesseeKnoxvilleUSA
  3. 3.Department of Mechanical, Aerospace and Biomedical EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations