Skip to main content
Log in

Transformation of oscillators using Op Amps, unity gain cells and CFOA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The realization of two integrator loop oscillators using Operational Amplifiers (Op Amps) is reviewed and a new additional circuit to provide independent control on the oscillation condition is proposed. Four new grounded capacitor oscillator circuits using unity gain cells and having independent control on the condition of oscillation and on the frequency of oscillation are introduced. The link between the Op Amp based two integrator loop oscillators and three Current Feedback Operational Amplifier (CFOA) based oscillators is detected and clearly explained. This paper serves also as a tutorial paper in introducing the subject of second order two integrator loop oscillators using state variable matrix equation and Nodal Admittance Matrix (NAM) equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sedra, A. S., & Smith, K. C. (1998). Microelectronic circuits (4th ed., pp. 973–986). Oxford: Oxford University Press.

    Google Scholar 

  2. Millman, J., & Halkias, C. C. (1972). Integrated electronics: Analog and digital circuits and systems (pp. 483–495). New York: McGraw Hill.

    Google Scholar 

  3. Stanley, W. (1984). Operational amplifier with linear integrated circuits (pp. 231–238). Toronto: Merill Publishing Company.

    Google Scholar 

  4. Budak, A., & Petrala, D. (1972). Frequency limitations of active filters using operational amplifiers. IEEE Transactions on Circuit Theory, 19, 322–328.

    Article  Google Scholar 

  5. Budak, A., & Nay, K. (1981). Operational amplifier circuits for Wien bridge oscillators. IEEE Transactions on Circuits and Systems, 28, 930–934.

    Article  Google Scholar 

  6. Soliman, A. M., Al-Shamaa, M. H., & Dak Al-Bab, M. (1988). Active compensation of RC oscillators. Frequenz, 42, 325–332.

    Google Scholar 

  7. Liu, S. I., Shih, C. S., & Wu, D. S. (1994). Sinusoidal oscillators with single element control using a current feedback amplifier. International Journal of Electronics, 77, 1007–1013.

    Article  Google Scholar 

  8. Senani, R., & Singh, V. K. (1996). Synthesis of canonic single resistance controlled oscillators using a single current feedback amplifier. IEE Proceedings of Circuits Devices Systems, 143, 71–72.

    Article  MATH  Google Scholar 

  9. Celma, S., Martinez, P., & Carlosena, A. (1994). Current feedback amplifiers based sinusoidal oscillators. IEEE Transactions on Circuits and Systems, 41, 906–908.

    Article  Google Scholar 

  10. Liu, S. I., & Tsay, J. H. (1996). Single resistance controlled sinusoidal oscillator using current feedback amplifiers. International Journal of Electronics, 80, 661–664.

    Article  Google Scholar 

  11. Senani, R., & Singh, V. K. (1996). Novel single resistance controlled oscillator configuration using current feedback amplifiers. IEEE Transactions on Circuits and Systems, 43, 698–700.

    Article  Google Scholar 

  12. Senani, R., & Gupta, S. S. (1997). Synthesis of single-resistance-controlled oscillators using CFOAs: Simple state variable approach. IEE Proceedings of Circuits Devices Systems, 144(2), 104–106.

    Article  Google Scholar 

  13. Gupta, S. S., & Senani, R. (1998). State variable synthesis of single-resistance-controlled grounded capacitor oscillators using only two CFOAs. IEE Proceedings of Circuits Devices Systems, 145(2), 135–138.

    Article  Google Scholar 

  14. Martinez, P., Sabadell, J., & Aldea, C. (1997). Grounded resistor controlled sinusoidal oscillator using CFOAs. Electronics Letters, 33(5), 346–347.

    Article  Google Scholar 

  15. Soliman, A. M. (2000). Current feedback operational amplifier based oscillators. Analog Integrated Circuits and Signal Processing, 23(1), 45–55.

    Article  Google Scholar 

  16. Soliman, A. M. (1997). Wien oscillators using current feedback Op Amp. International Journal of Electronics and Communication AEU, 51, 314–319.

    Google Scholar 

  17. Anderson, B. D. O. (1971). Oscillator design problem. IEEE Journal of Solid State Circuits, 6, 89–91.

    Article  Google Scholar 

  18. Ananda Mohan, P. V., Ramachandran, V., & Swamy, M. N. S. (1985). Nodal voltage simulation of active RC networks. IEEE Transactions on Circuits and Systems, 32, 1085–1088.

    Article  Google Scholar 

  19. Soliman, A. M. (2008). History and progress of the Tow Thomas circuit: Part I, generation and Op Amp realizations. Journal of Circuits Systems and Computers, 17, 33–54.

    Article  Google Scholar 

  20. Deboo, G. J. (1967). A novel integrator results by grounding its capacitor. Electronic Design, 15.

  21. Senani, R. (1985). New RC-active oscillator configuration employing unity-gain amplifiers. Electronics Letters, 21, 889–891.

    Article  Google Scholar 

  22. Soliman, A. M. (1998). Novel oscillator using current and voltage followers. Journal of The Franklin Institute, 6, 997–1007.

    Article  Google Scholar 

  23. Gupta, S. S., & Senani, R. (2006). New single resistance controlled oscillator configurations using unity gain cells. Analog Integrated Circuits and Signal Processing, 46, 111–119.

    Article  Google Scholar 

  24. Soliman, A. M. (2009). Applications of voltage and current unity gain cells in nodal admittance matrix expansion. IEEE Circuits and Systems Magazine, 9(4), 29–42.

    Article  Google Scholar 

  25. Dostal, T. (1995). Insensitive voltage-mode and current-mode filters from trans-impedance Op Amps. IEE Proceedings of Circuits Devices Systems, 142, 140–143.

    Article  Google Scholar 

  26. Haigh, D. G., Clarke, T. J. W., & Radmore, P. M. (2006). Symbolic framework for linear active circuits based on port equivalence using limit variables. IEEE Transactions on Circuits and Systems I, 53(9), 2011–2024.

    Article  MathSciNet  Google Scholar 

  27. Haigh, D. G. (2006). A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion. IEEE Transactions on Circuits and Systems I, 53(12), 2715–2728.

    Article  MathSciNet  Google Scholar 

  28. Saad, R. A., & Soliman, A. M. (2008). Generation, modeling, and analysis of CCII-Based gyrators using the generalized symbolic framework for linear active circuits. International Journal of Circuit Theory and Applications, 36(3), 289–309.

    Article  MATH  Google Scholar 

  29. Saad, R. A., & Soliman, A. M. (2008). Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Transactions on Circuits and Systems I, 55(9), 2726–2735.

    Article  Google Scholar 

  30. Soliman, A. M. (2009). Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integrated Circuits and Signal Processing. doi:10.1007/s10470-009-9432-5.

  31. Awad, I. A., & Soliman, A. M. (2002). On the voltage mirrors and the current mirrors. Analog Integrated Circuits and Signal Processing, 32(1), 79–81.

    Article  Google Scholar 

  32. Lindberg, E., Murali, K., Tamasevicius, A., & Wangenheim, L. (2009). An Eigen value study of a double integrator oscillator. In Proceedings of the 20th European Conference on Circuit Theory and Design (ECCCD 09), pp. 217–220.

  33. Lindberg, E. (2007). Systematic equation formulation. In Proceedings of the 18th European Conference on Circuit Theory and Design (ECCTD 07), pp. 974–977.

Download references

Acknowledgement

The author thanks the reviewers for the useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Soliman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, A.M. Transformation of oscillators using Op Amps, unity gain cells and CFOA. Analog Integr Circ Sig Process 65, 105–114 (2010). https://doi.org/10.1007/s10470-010-9458-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9458-8

Keywords

Navigation