Skip to main content
Log in

Rail-to-rail BiCMOS operational amplifier using input signal adapters with floating outputs

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An operational amplifier with rail-to-rail input and output voltage range in 0.6 μm BiCMOS technology is presented. Two simple input signal adapters with floating outputs serving as pre-stages are introduced. They are followed by a differential amplifier. The adapters translate the input signals into a floating level within the operating region of the differential amplifier, enabling rail-to-rail operation. An inverter-based simple rail-to-rail class AB output stage has been used. With a single supply of 1.5 V, the proposed rail-to-rail operational amplifier achieves 72 dB DC open-loop gain, 2.54 MHz unity-gain frequency, 62° phase margin, 2.5 V/μs slew rate, and 147 μW power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Coban, A. L., Allen, P. E., & Shi, X. (1995). Low-voltage analog IC design in CMOS technology. IEEE Transactions on Circuits and Systems, 42(Part I), 955–958.

    Google Scholar 

  2. Nagaraj, K. (1995). Constant transconductance CMOS amplifier input stage with rail-to-rail input common mode voltage range. IEEE Transactions on Circuits and Systems, 42(Part II), 366–368.

    Google Scholar 

  3. Hogervorst, R., Tero, J. P., Eschauzier, R. G. H., & Huijsing, J. H. (1994). A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE Journal of Solid-State Circuits, 29, 1505–1513.

    Article  Google Scholar 

  4. Sakurai, S., & Ismail, M. (1996). Robust design of rail-to-rail CMOS operational amplifier for a low power supply voltage. IEEE Journal of Solid-State Circuits, 31, 146–156.

    Article  Google Scholar 

  5. Wang, M., Mayhugh, T. L., Embabi, S. H. K., & Sanchez-Sinencio, E. (1999). Constant-g m rail-to-rail CMOS op-amp input stage with overlapped transition regions. IEEE Journal of Solid-State Circuits, 34, 148–156.

    Article  Google Scholar 

  6. Carrillo, J. M., Duque-Carrillo, J. F., Torelli, G., & Ausin, J. L. (2003). Constant-g m constant-slew-rate high-bandwidth low-voltage rail-to-rail CMOS input stage for VLSI cell libraries. IEEE Journal of Solid-State Circuits, 38, 1364–1372.

    Article  Google Scholar 

  7. Blalock, B. J., Allen, P. E., & Rincon-Mora, G. (1998). Designing 1-V op amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems, 45(Part II), 769–780.

    Google Scholar 

  8. Carrillo, J. M., Torelli, G., Perez-Aloe, R., & Duque-Carrillo, J. F. (2007). 1-V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE Journal of Solid-State Circuits, 42, 508–517.

    Article  Google Scholar 

  9. Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2007). An ultra-low-voltage ultra-low-power CMOS Miller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems, 54(Part II), 843–847.

    Google Scholar 

  10. Griffith, R., Vyne, R. L., Dotson, R. N., & Petty, T. (1997). A 1 V BiCMOS rail-to-rail amplifier with n-channel depletion mode input stage. IEEE Journal of Solid-State Circuits, 32, 2012–2022.

    Article  Google Scholar 

  11. Stockstad, T., & Yoshizawa, H. (2002). A 0.9-V 0.5-μA rail-to-rail CMOS operational amplifier. IEEE Journal of Solid-State Circuits, 37, 286–292.

    Article  Google Scholar 

  12. Duque-Carrillo, J. F., Ausin, J. L., Torreli, G., Valverde, J. M., & Dominguez, M. A. (2000). 1-V rail-to-rail operational amplifiers in standard CMOS technology. IEEE Journal of Solid-State Circuits, 35, 33–44.

    Article  Google Scholar 

  13. Ramirez-Angulo, J., Carvajal, R. G., Tombs, J., & Torralba, A. (2001). Low-voltage CMOS op-amp wit rail-to-rail input and output signal swing for continuous-time signal processing using multiple-input floating-gate transistors. IEEE Transactions on Circuits and Systems, 48(Part II), 111–116.

    Google Scholar 

  14. Fischer, T. W., Karsilayan, A. I., & Sanchez-Sinencio, E. (2005). A rail-to-rail amplifier input stage with ± 0.35% g m fluctuation. IEEE Transactions on Circuits and Systems, 52(Part I), 271–282.

    Google Scholar 

  15. Baez-Villegas, D., & Silva-Martinez, J. (2006). Quasi rail-to-rail very low-voltage OPAMP with a single pMOS input differential pair. IEEE Transactions on Circuits and Systems, 53(Part II), 1175–1179.

    Google Scholar 

  16. Hogervorst, R., & Huijsing, J. H. (1996). Design of low-voltage, low-power operational amplifier cells. Boston, MA: Kluwer.

    Google Scholar 

  17. Tsividis, Y. (1999). Operation and modeling of the MOS transistor (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  18. Gray, P. R., & Meyer, R. G. (1993). Analysis and design of analog integrated circuits (3rd ed.). New York: Wiley.

    Google Scholar 

  19. Johns, D., & Martin, K. (1997). Analog integrated circuit design. New York: Wiley.

    Google Scholar 

  20. Sooch, N. S. (1985). MOS cascade current mirror. US Patent 4 550 284.

  21. Babanezhad, J. N., & Gregorian, R. (1987). A programmable gain/loss circuit. IEEE Journal of Solid-State Circuits, 22, 1082–1090.

    Article  Google Scholar 

  22. Sakurai, T., & Newton, R. (1990). Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE Journal of Solid-State Circuits, 25, 584–594.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Austrian Science Fund (FWF) for funding, and A. Marchlewski for noise simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikša Tadić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadić, N., Banjević, M., Schloegl, F. et al. Rail-to-rail BiCMOS operational amplifier using input signal adapters with floating outputs. Analog Integr Circ Sig Process 63, 433–449 (2010). https://doi.org/10.1007/s10470-009-9423-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9423-6

Keywords

Navigation