Abstract
An operational amplifier with rail-to-rail input and output voltage range in 0.6 μm BiCMOS technology is presented. Two simple input signal adapters with floating outputs serving as pre-stages are introduced. They are followed by a differential amplifier. The adapters translate the input signals into a floating level within the operating region of the differential amplifier, enabling rail-to-rail operation. An inverter-based simple rail-to-rail class AB output stage has been used. With a single supply of 1.5 V, the proposed rail-to-rail operational amplifier achieves 72 dB DC open-loop gain, 2.54 MHz unity-gain frequency, 62° phase margin, 2.5 V/μs slew rate, and 147 μW power consumption.
Similar content being viewed by others
References
Coban, A. L., Allen, P. E., & Shi, X. (1995). Low-voltage analog IC design in CMOS technology. IEEE Transactions on Circuits and Systems, 42(Part I), 955–958.
Nagaraj, K. (1995). Constant transconductance CMOS amplifier input stage with rail-to-rail input common mode voltage range. IEEE Transactions on Circuits and Systems, 42(Part II), 366–368.
Hogervorst, R., Tero, J. P., Eschauzier, R. G. H., & Huijsing, J. H. (1994). A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE Journal of Solid-State Circuits, 29, 1505–1513.
Sakurai, S., & Ismail, M. (1996). Robust design of rail-to-rail CMOS operational amplifier for a low power supply voltage. IEEE Journal of Solid-State Circuits, 31, 146–156.
Wang, M., Mayhugh, T. L., Embabi, S. H. K., & Sanchez-Sinencio, E. (1999). Constant-g m rail-to-rail CMOS op-amp input stage with overlapped transition regions. IEEE Journal of Solid-State Circuits, 34, 148–156.
Carrillo, J. M., Duque-Carrillo, J. F., Torelli, G., & Ausin, J. L. (2003). Constant-g m constant-slew-rate high-bandwidth low-voltage rail-to-rail CMOS input stage for VLSI cell libraries. IEEE Journal of Solid-State Circuits, 38, 1364–1372.
Blalock, B. J., Allen, P. E., & Rincon-Mora, G. (1998). Designing 1-V op amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems, 45(Part II), 769–780.
Carrillo, J. M., Torelli, G., Perez-Aloe, R., & Duque-Carrillo, J. F. (2007). 1-V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE Journal of Solid-State Circuits, 42, 508–517.
Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2007). An ultra-low-voltage ultra-low-power CMOS Miller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems, 54(Part II), 843–847.
Griffith, R., Vyne, R. L., Dotson, R. N., & Petty, T. (1997). A 1 V BiCMOS rail-to-rail amplifier with n-channel depletion mode input stage. IEEE Journal of Solid-State Circuits, 32, 2012–2022.
Stockstad, T., & Yoshizawa, H. (2002). A 0.9-V 0.5-μA rail-to-rail CMOS operational amplifier. IEEE Journal of Solid-State Circuits, 37, 286–292.
Duque-Carrillo, J. F., Ausin, J. L., Torreli, G., Valverde, J. M., & Dominguez, M. A. (2000). 1-V rail-to-rail operational amplifiers in standard CMOS technology. IEEE Journal of Solid-State Circuits, 35, 33–44.
Ramirez-Angulo, J., Carvajal, R. G., Tombs, J., & Torralba, A. (2001). Low-voltage CMOS op-amp wit rail-to-rail input and output signal swing for continuous-time signal processing using multiple-input floating-gate transistors. IEEE Transactions on Circuits and Systems, 48(Part II), 111–116.
Fischer, T. W., Karsilayan, A. I., & Sanchez-Sinencio, E. (2005). A rail-to-rail amplifier input stage with ± 0.35% g m fluctuation. IEEE Transactions on Circuits and Systems, 52(Part I), 271–282.
Baez-Villegas, D., & Silva-Martinez, J. (2006). Quasi rail-to-rail very low-voltage OPAMP with a single pMOS input differential pair. IEEE Transactions on Circuits and Systems, 53(Part II), 1175–1179.
Hogervorst, R., & Huijsing, J. H. (1996). Design of low-voltage, low-power operational amplifier cells. Boston, MA: Kluwer.
Tsividis, Y. (1999). Operation and modeling of the MOS transistor (2nd ed.). New York: McGraw-Hill.
Gray, P. R., & Meyer, R. G. (1993). Analysis and design of analog integrated circuits (3rd ed.). New York: Wiley.
Johns, D., & Martin, K. (1997). Analog integrated circuit design. New York: Wiley.
Sooch, N. S. (1985). MOS cascade current mirror. US Patent 4 550 284.
Babanezhad, J. N., & Gregorian, R. (1987). A programmable gain/loss circuit. IEEE Journal of Solid-State Circuits, 22, 1082–1090.
Sakurai, T., & Newton, R. (1990). Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE Journal of Solid-State Circuits, 25, 584–594.
Acknowledgments
The authors would like to thank the Austrian Science Fund (FWF) for funding, and A. Marchlewski for noise simulations.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tadić, N., Banjević, M., Schloegl, F. et al. Rail-to-rail BiCMOS operational amplifier using input signal adapters with floating outputs. Analog Integr Circ Sig Process 63, 433–449 (2010). https://doi.org/10.1007/s10470-009-9423-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10470-009-9423-6