Skip to main content
Log in

CAD tools for efficient RF/microwave transistor modeling and circuit design

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In today’s radiofrequency and microwave communication circuits, there is an ever-increasing demand for higher integration and miniaturization. This trend leads to massive computational tasks during simulation, optimization and statistical analyses, requiring robust modeling tools so that the whole process can be achieved reliably. In this paper, the authors proposed frequency- and time-domain computer-aided design tools that can characterize RF/microwave field effect and heterojunction bipolar transistors and efficiently predict a circuit performance. The proposed tools are demonstrated through examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Cornett, K. D. (2000). A wireless R&D perspective on RF/IF passives integration. IEEE Bipolar/Bicmos Circuits and Technical Meeting, Minneapolis, MN, pp. 187–190.

  2. Tummala, R. R., Swaminathan, M., Tentzeris, M. M., Laskar, J., Chang, G.-K., Sitaraman, S., et al. (2004). The SOP for miniaturized, mixed-signal computing, communication, and consumer systems of the next decade. IEEE Transactions on Advanced Packaging, 27, 250–267.

    Article  Google Scholar 

  3. Uchida, K. (2006). Single-electron transistors and circuits for future ubiquitous computing applications. European Solid-State Device Research Conference, Montreux, Switzerland, pp. 17–20.

  4. Mashkantsev, V. G., & Kalinin, S. V. (2006). The perspective structures for microwave heterotransistors for communication techniques. International Workshop on Electron Devices and Materials, Novosibirsk, Russia, pp. 24–26.

  5. Razavi, B. (2007). Design considerations for future RF circuits. IEEE International CAS-Symposium, New Orleans, LA, pp. 741–744.

  6. Watson, P. M., Gupta, K. C., & Mahajan, R. L. (1998). Development of knowledge based artificial neural network models for microwave components. IEEE International Microwave Theory Techniques Symposium, Baltimore, MD, pp. 9–12.

  7. Bandler, J., Ismail, M. A., Rayas-Sanchez, J. E, & Zhang, Q. J. (1999). New directions in model development for RF/microwave components utilizing artificial neural networks and space mapping. IEEE International Antenna Propagation Symposium, Orlando, FL, pp. 2572–2575.

  8. Zhang, Q. J., & Gupta, K. C. (2000). Neural networks for RF and microwave design. Norwood, MA: Artech House.

    Google Scholar 

  9. Devabhaktuni, V. K., Chattaraj, B., Yagoub, M. C. E., & Zhang, Q. J. (2002). Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping. IEEE International Microwave Theory Techniques Symposium, Seattle, WA, pp. 1098–1100.

  10. Yagoub, M. C. E. (2004). Optimisation des performances de modules multi-puces. Modélisation par réseaux de neurones. Annales des Télécommunications, 59, 941–966.

    Google Scholar 

  11. Karlik, B., Torpi, H., & Alci, M. (2002). A fuzzy-neural approach for the characterisation of the active microwave devices. International Conference Microwave Telecommunication Technology, Sevastopol, Ukraine, pp. 114–117.

  12. Miraftab, V., & Mansour, R. R. (2006). EM-based microwave circuit design using fuzzy logic techniques. IEE Proceedings of Microwaves Antennas Propagation, 153, 495–501.

    Article  Google Scholar 

  13. Rahouyi, E. B., Hinojosa, J., & Garrigos, J. (2006). Neuro-fuzzy modeling techniques for microwave components. IEEE Microwave Wireless Components Letters, 16, 72–74.

    Article  Google Scholar 

  14. Gaoua, S., Ji, L., Cheng, Z., Mohammadi, F. A., & Yagoub, M. C. E. (2009). Fuzzy neural-based approaches for efficient RF/microwave transistor modeling. International Journal of RF and Microwave CAE, 19, 128–139.

    Article  Google Scholar 

  15. Hung, M.-C., & Yang, D.-L. (2001). An efficient fuzzy c-means clustering algorithm. IEEE International Conference on Data Mining, San Jose, CA, pp. 225–232.

  16. Golio, J. M. (1991). Microwave MESFETs and HEMTs. Boston, MA: Artech House.

    Google Scholar 

  17. Fujiang, L., & Kompa, G. (1994). FET model parameter extraction based on optimization with multiplane data-fitting and bidirectional search-a new concept. IEEE Transactions on Microwave Theory and Techniques, 42, 1114–1121.

    Article  Google Scholar 

  18. Dambrine, G., Cappy, A., Heliodore, F., & Playez, E. (1998). A new method for determining the FET small-signal equivalent circuit. IEEE Transactions on Microwave Theory and Techniques, 36, 1151–1159.

    Article  Google Scholar 

  19. Van Niekerk, C., Meyer, P., Schreurs, D. M. M.-P., & Winson, P. B. (2000). A robust integrated multibias parameter-extraction method for MESFET and HEMT models. IEEE Transactions on Microwave Theory and Techniques, 48, 777–786.

    Article  Google Scholar 

  20. Movahhedi, M., & Abdipour, A. (2006). Efficient numerical methods for simulation of high-frequency active devices. IEEE Transactions on Microwave Theory and Techniques, 54, 2636–2645.

    Article  Google Scholar 

  21. Tasker, P. J., & Fernandez-Barciela, M. (2002). HBT small signal T and π model extraction using a simple, robust and fully analytical procedure. IEEE International Microwave Theory Techniques Symposium, Seattle, WA, pp. 2129–2132.

  22. Fernandez-Barciela, M., Tasker, P. J., Campos-Roca, Y., Demmler, M., Massler, H., Sanchez, E., et al. (2000). A simplified broad-band large-signal nonquasi-static table-based FET model. IEEE Transactions on Microwave Theory and Techniques, 48, 395–405.

    Article  Google Scholar 

  23. Menozzi, R., Piazzi, A., & Contini, F. (1996). Small-signal modeling for microwave FET linear circuits based on a genetic algorithm. IEEE Transactions on Circuits and Systems, 43, 839–847.

    Google Scholar 

  24. Ahmed, M. K., & Ibrahem, S. M. M. (1996). Small signal GaAs MESFET model parameters extracted from measured S-parameters. National Radio Science Conference, Cairo, Egypt, pp. 507–515.

  25. ADS. (2008). Agilent Technologies, Palo Alto, CA.

  26. Rios, J. M. M., Lunardi, L. M., Chandrasekhar, S., & Miyamoto, Y. (1997). A self-consistent method for complete small-signal parameter extraction of InP-based heterojunction bipolar transistors. IEEE Transactions on Microwave Theory and Techniques, 45, 39–45.

    Article  Google Scholar 

  27. Sheinman, B., Wasige, E., Rudolph, M., Doerner, R., Sidorov, V., Cohen, S., et al. (2002). A peeling algorithm for extraction of the HBT small-signal equivalent circuit. IEEE Transactions on Microwave Theory and Techniques, 50, 2804–2810.

    Article  Google Scholar 

  28. Teo, T. H., Xiong, Y. Z., Fu, J. S., Liao, H., Shi, J., Yu, M., & Li, W. (2004). Systematic direct parameter extraction with substrate network of SiGe HBT. Radio Frequency Integrated Circuit Symposium, Fort Worth, TX, pp. 603–606.

  29. Maple 8. (2001). Reference manual. New York.

  30. Zhang, Q. J. (2000). NeuroModeler Software v1.2. Ottawa, ON, Canada: Carleton University.

    Google Scholar 

  31. Alsunaidi, M. A., Imtiaz, S. M. S., & El-Ghazaly, S. M. (1996). Electromagnetic wave effects on microwave transistors using a full-wave time-domain model. IEEE Transactions on Microwave Theory and Techniques, 44, 799–808.

    Article  Google Scholar 

  32. Ongareau, E., Bosisio, R. G., Aubourg, M., Obregon, J., & Gayral, M. (1994). A non-linear and distributed modeling procedure of FETs. International Journal of Numerical Modeling, 7, 309–319.

    Article  Google Scholar 

  33. Taeb, A., Abdipour, A., & Mohammadi, A. (2006). Modeling and analysis of a nonlinear fully distributed FET using FDTD technique. AEU International Journal of Electronics and Communications, 61(2006), 444–452.

    Google Scholar 

  34. Ghazaly, S. M., & Itoh, T. (1988). Inverted-gate field-effect transistors: novel high frequency structures. IEEE Transactions on Electronic Devices, 35, 810–817.

    Article  Google Scholar 

  35. El-Ghazaly, S. M., & Itoh, T. (1989). Traveling-wave inverted-gate field-effect transistor: concept, analysis, and potential. IEEE Transactions on Microwave Theory and Techniques, 37, 1027–1032.

    Article  Google Scholar 

  36. Tafove, A. (1996). Computational electrodynamics: The finite-difference time-domain method. Norwood, MA: Artech House.

    Google Scholar 

  37. http://www.nec.com.

Download references

Acknowledgments

This work is supported in part by Natural Science and Engineering Research Council of Canada and in part by Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha C. E. Yagoub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaoua, S., Asadi, S., Yagoub, M.C.E. et al. CAD tools for efficient RF/microwave transistor modeling and circuit design. Analog Integr Circ Sig Process 63, 59–70 (2010). https://doi.org/10.1007/s10470-009-9381-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9381-z

Keywords

Navigation