Abstract
In today’s radiofrequency and microwave communication circuits, there is an ever-increasing demand for higher integration and miniaturization. This trend leads to massive computational tasks during simulation, optimization and statistical analyses, requiring robust modeling tools so that the whole process can be achieved reliably. In this paper, the authors proposed frequency- and time-domain computer-aided design tools that can characterize RF/microwave field effect and heterojunction bipolar transistors and efficiently predict a circuit performance. The proposed tools are demonstrated through examples.
Similar content being viewed by others
References
Cornett, K. D. (2000). A wireless R&D perspective on RF/IF passives integration. IEEE Bipolar/Bicmos Circuits and Technical Meeting, Minneapolis, MN, pp. 187–190.
Tummala, R. R., Swaminathan, M., Tentzeris, M. M., Laskar, J., Chang, G.-K., Sitaraman, S., et al. (2004). The SOP for miniaturized, mixed-signal computing, communication, and consumer systems of the next decade. IEEE Transactions on Advanced Packaging, 27, 250–267.
Uchida, K. (2006). Single-electron transistors and circuits for future ubiquitous computing applications. European Solid-State Device Research Conference, Montreux, Switzerland, pp. 17–20.
Mashkantsev, V. G., & Kalinin, S. V. (2006). The perspective structures for microwave heterotransistors for communication techniques. International Workshop on Electron Devices and Materials, Novosibirsk, Russia, pp. 24–26.
Razavi, B. (2007). Design considerations for future RF circuits. IEEE International CAS-Symposium, New Orleans, LA, pp. 741–744.
Watson, P. M., Gupta, K. C., & Mahajan, R. L. (1998). Development of knowledge based artificial neural network models for microwave components. IEEE International Microwave Theory Techniques Symposium, Baltimore, MD, pp. 9–12.
Bandler, J., Ismail, M. A., Rayas-Sanchez, J. E, & Zhang, Q. J. (1999). New directions in model development for RF/microwave components utilizing artificial neural networks and space mapping. IEEE International Antenna Propagation Symposium, Orlando, FL, pp. 2572–2575.
Zhang, Q. J., & Gupta, K. C. (2000). Neural networks for RF and microwave design. Norwood, MA: Artech House.
Devabhaktuni, V. K., Chattaraj, B., Yagoub, M. C. E., & Zhang, Q. J. (2002). Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping. IEEE International Microwave Theory Techniques Symposium, Seattle, WA, pp. 1098–1100.
Yagoub, M. C. E. (2004). Optimisation des performances de modules multi-puces. Modélisation par réseaux de neurones. Annales des Télécommunications, 59, 941–966.
Karlik, B., Torpi, H., & Alci, M. (2002). A fuzzy-neural approach for the characterisation of the active microwave devices. International Conference Microwave Telecommunication Technology, Sevastopol, Ukraine, pp. 114–117.
Miraftab, V., & Mansour, R. R. (2006). EM-based microwave circuit design using fuzzy logic techniques. IEE Proceedings of Microwaves Antennas Propagation, 153, 495–501.
Rahouyi, E. B., Hinojosa, J., & Garrigos, J. (2006). Neuro-fuzzy modeling techniques for microwave components. IEEE Microwave Wireless Components Letters, 16, 72–74.
Gaoua, S., Ji, L., Cheng, Z., Mohammadi, F. A., & Yagoub, M. C. E. (2009). Fuzzy neural-based approaches for efficient RF/microwave transistor modeling. International Journal of RF and Microwave CAE, 19, 128–139.
Hung, M.-C., & Yang, D.-L. (2001). An efficient fuzzy c-means clustering algorithm. IEEE International Conference on Data Mining, San Jose, CA, pp. 225–232.
Golio, J. M. (1991). Microwave MESFETs and HEMTs. Boston, MA: Artech House.
Fujiang, L., & Kompa, G. (1994). FET model parameter extraction based on optimization with multiplane data-fitting and bidirectional search-a new concept. IEEE Transactions on Microwave Theory and Techniques, 42, 1114–1121.
Dambrine, G., Cappy, A., Heliodore, F., & Playez, E. (1998). A new method for determining the FET small-signal equivalent circuit. IEEE Transactions on Microwave Theory and Techniques, 36, 1151–1159.
Van Niekerk, C., Meyer, P., Schreurs, D. M. M.-P., & Winson, P. B. (2000). A robust integrated multibias parameter-extraction method for MESFET and HEMT models. IEEE Transactions on Microwave Theory and Techniques, 48, 777–786.
Movahhedi, M., & Abdipour, A. (2006). Efficient numerical methods for simulation of high-frequency active devices. IEEE Transactions on Microwave Theory and Techniques, 54, 2636–2645.
Tasker, P. J., & Fernandez-Barciela, M. (2002). HBT small signal T and π model extraction using a simple, robust and fully analytical procedure. IEEE International Microwave Theory Techniques Symposium, Seattle, WA, pp. 2129–2132.
Fernandez-Barciela, M., Tasker, P. J., Campos-Roca, Y., Demmler, M., Massler, H., Sanchez, E., et al. (2000). A simplified broad-band large-signal nonquasi-static table-based FET model. IEEE Transactions on Microwave Theory and Techniques, 48, 395–405.
Menozzi, R., Piazzi, A., & Contini, F. (1996). Small-signal modeling for microwave FET linear circuits based on a genetic algorithm. IEEE Transactions on Circuits and Systems, 43, 839–847.
Ahmed, M. K., & Ibrahem, S. M. M. (1996). Small signal GaAs MESFET model parameters extracted from measured S-parameters. National Radio Science Conference, Cairo, Egypt, pp. 507–515.
ADS. (2008). Agilent Technologies, Palo Alto, CA.
Rios, J. M. M., Lunardi, L. M., Chandrasekhar, S., & Miyamoto, Y. (1997). A self-consistent method for complete small-signal parameter extraction of InP-based heterojunction bipolar transistors. IEEE Transactions on Microwave Theory and Techniques, 45, 39–45.
Sheinman, B., Wasige, E., Rudolph, M., Doerner, R., Sidorov, V., Cohen, S., et al. (2002). A peeling algorithm for extraction of the HBT small-signal equivalent circuit. IEEE Transactions on Microwave Theory and Techniques, 50, 2804–2810.
Teo, T. H., Xiong, Y. Z., Fu, J. S., Liao, H., Shi, J., Yu, M., & Li, W. (2004). Systematic direct parameter extraction with substrate network of SiGe HBT. Radio Frequency Integrated Circuit Symposium, Fort Worth, TX, pp. 603–606.
Maple 8. (2001). Reference manual. New York.
Zhang, Q. J. (2000). NeuroModeler Software v1.2. Ottawa, ON, Canada: Carleton University.
Alsunaidi, M. A., Imtiaz, S. M. S., & El-Ghazaly, S. M. (1996). Electromagnetic wave effects on microwave transistors using a full-wave time-domain model. IEEE Transactions on Microwave Theory and Techniques, 44, 799–808.
Ongareau, E., Bosisio, R. G., Aubourg, M., Obregon, J., & Gayral, M. (1994). A non-linear and distributed modeling procedure of FETs. International Journal of Numerical Modeling, 7, 309–319.
Taeb, A., Abdipour, A., & Mohammadi, A. (2006). Modeling and analysis of a nonlinear fully distributed FET using FDTD technique. AEU International Journal of Electronics and Communications, 61(2006), 444–452.
Ghazaly, S. M., & Itoh, T. (1988). Inverted-gate field-effect transistors: novel high frequency structures. IEEE Transactions on Electronic Devices, 35, 810–817.
El-Ghazaly, S. M., & Itoh, T. (1989). Traveling-wave inverted-gate field-effect transistor: concept, analysis, and potential. IEEE Transactions on Microwave Theory and Techniques, 37, 1027–1032.
Tafove, A. (1996). Computational electrodynamics: The finite-difference time-domain method. Norwood, MA: Artech House.
Acknowledgments
This work is supported in part by Natural Science and Engineering Research Council of Canada and in part by Canada Foundation for Innovation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gaoua, S., Asadi, S., Yagoub, M.C.E. et al. CAD tools for efficient RF/microwave transistor modeling and circuit design. Analog Integr Circ Sig Process 63, 59–70 (2010). https://doi.org/10.1007/s10470-009-9381-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10470-009-9381-z