Abstract
The simple free running multivibrator built around a single fractional capacitor is examined in this letter. Equations for the oscillation frequency of the multivibrator are derived taking into account the positive feedback factor around the multivibrator. We show that the use of the fractional capacitance allows the multivibrator to have very high frequencies of oscillation for reasonable time constants used. PSPICE simulation and experimental results demonstrate the analysis with an approximation to a fractional capacitor that yields a result, which is at least 1000 times in frequency compared to if a normal capacitor of the same value was employed.
References
Carlson, G. E., & Halijak, C. A. (1964). Approximation of fractional capacitors (1/s)1/n by regular newton process. IEEE Transactions on Circuit Theory CT, 11(2), 210–213.
Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples. International Journal of Circuit Theory and Applications, 36, 473–492.
Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). First-order filters generalized to the fractional domain. Journal of Circuits, Systems and Computers, 17(1), 55–66.
Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing (USA) 53(9), 802 – 806.
Jesus, I. S., Machado, J. A. T., Cunha, J. B., & Silva, M. F. (2006). Fractional order electrical impedance of fruits and vegetables. In Proceedings of the IASTED international conference on Modelling, Identification, and Control, MIC, Strony, pp. 489–494.
Jesus, I. S., MacHado, J. A. T., & Cunha, J. B. (2008). Fractional electrical impedances in botanical elements. JVC/Journal of Vibration and Control, 14(9–10), 1389–1402.
Machado, J. A. T., Jesus, I. S., Galhano, A., & Cunha, J. B. (2006). Fractional order electromagnetics. Signal Processing, 86(10), 2637–2644.
Nakagawa, M., & Sorimachi, K. (1992). Basic characteristics of a fractance device. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences (Japan), E75-A(12), 1814–1819.
Ahmad, W., El-khazali, R., & Elwakil, A. S. (2001). Fractional-order wien-bridge oscillator. Electronics Letters, 37(18), 1110–1112.
Hartley, T. T., & Lorenzo, C. F. (1998). A solution to the fundamental linear fractional order differential equation. Raport instytutowy 208693, National Aeronautics and Space Administration (NASA).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maundy, B., Elwakil, A. & Gift, S. On a multivibrator that employs a fractional capacitor. Analog Integr Circ Sig Process 62, 99–103 (2010). https://doi.org/10.1007/s10470-009-9329-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10470-009-9329-3