A 122 TΩ Hz transimpedance bandwidth product BiCMOS optical sensor front-end with a 54.7 dB voltage-controlled photo-sensitivity range

  • Nikša TadićEmail author
  • Artur Marchlewski
  • Horst Zimmermann


An optical sensor front-end with integrated PIN photodiode in 0.6 μm BiCMOS technology intended for universal optical storage operation is presented. It is based on a mixed current conveyor and voltage amplifiers topology avoiding stability problems. The transimpedance is continuously variable and directly proportional to a voltage-controlled resistance. Another voltage-controlled resistor within a variable-gain voltage amplifier increases the photo-sensitivity range. A fixed-gain voltage amplifier and a current biasing of the current conveyor enable frequency bandwidth enhancement leading to a large transimpedance bandwidth product. A linearity error smaller than 2.8%, a photo-sensitivity range of 541 (54.7 dB) with the largest photo-sensitivity of 2468 mV/μW, an offset voltage <13.7 mV, a frequency bandwidth up to 277 MHz, a slew rate up to 377 V/μs, a transimpedance bandwidth product up to 122 TΩ Hz, and a maximum power consumption of <4.3 mW are achieved.


Current conveyor Integrated PIN photodiode Optical sensor front-end Optical storage system Optoelectronic integrated circuit Transimpedance amplifier Voltage-controlled resistor 


  1. 1.
    Phang, K., & Johns, D. A. (1999). A CMOS optical preamplifier for wireless infrared communications. IEEE Transactions on Circuits and Systems, 46(Part II), 852–859. doi: 10.1109/82.775380.Google Scholar
  2. 2.
    Kieschnick, K., & Zimmermann, H. (2003). High-sensitivity BiCMOS OEIC for optical storage systems. IEEE Journal of Solid-State Circuits, 38, 579–584. doi: 10.1109/JSSC.2003.809513.CrossRefGoogle Scholar
  3. 3.
    Zimmermann, H. (2004). Silicon optoelectronic integrated circuits (pp. 231–236). Berlin: Springer.Google Scholar
  4. 4.
    Ruotsalainen, T., Palojarvi, P., & Kostamovaara, J. (1999). A current-mode gain-control scheme with constant bandwidth and propagation delay for a transimpedance preamplifier. IEEE Journal of Solid-State Circuits, 34, 253–258. doi: 10.1109/4.743791.CrossRefGoogle Scholar
  5. 5.
    Sturm, J., Leifhelm, M., Schatzmayr, H., Groiss, S., & Zimmermann, H. (2005). Optical receiver IC for CD/DVD/blue-laser application. IEEE Journal of Solid-State Circuits, 40, 1406–1413. doi: 10.1109/JSSC.2005.847269.CrossRefGoogle Scholar
  6. 6.
    Seidl, C., Schatzmayr, H., Sturm, J., Groiss, S., Leifhelm, M., Spitzer, D., et al. (2005). A programmable OEIC for laser applications in the range from 405 nm to 780 nm. In Proceedings of European Solid-State Circuits Conference, September 2005 (pp. 439–442).Google Scholar
  7. 7.
    Tadić, N., & Zimmermann, H. (2007). Low-power BiCMOS optical receiver with voltage-controlled transimpedance. IEEE Journal of Solid-State Circuits, 42, 613–626. doi: 10.1109/JSSC.2006.891720.CrossRefGoogle Scholar
  8. 8.
    Tadić, N., & Zimmermann, H. (2008). Optical receiver with widely tunable sensitivity in BiCMOS technology. IEEE Transactions on Circuits and Systems, 55(Part I), 1223–1236. doi: 10.1109/TCSI.2008.916399.Google Scholar
  9. 9.
    Tadić, N., & Zimmermann, H. (2006). Highly linear BiCMOS optical receiver with voltage-controlled sensitivity. Electronics Letters, 42(2), 116–117. doi: 10.1049/el:20063721.CrossRefGoogle Scholar
  10. 10.
    Sedra, A. S., Roberts, G. W., & Gohh, F. (1990). The current conveyer: History, progress and new results. IEE Proceedings. Circuits, Devices and Systems, 137, 78–87.CrossRefGoogle Scholar
  11. 11.
    Tsividis, Y. (1999). Operation and modeling of the MOS transistor (2nd ed.). New York: McGraw-Hill.Google Scholar
  12. 12.
    Förtsch, M., Zimmermann, H., & Pless, H. (2006). 220-MHz monolithically integrated optical sensor with large-area integrated PIN photodiode. IEEE Sensors Journal, 6, 385–390. doi: 10.1109/JSEN.2006.870168.CrossRefGoogle Scholar
  13. 13.
    Förtsch, M., Zimmermann, H., & Pless, H. (2003). 220 MHz optical receiver with large-area integrated PIN photodiode. In Proceedings of IEEE sensors conference, October (Vol. 2, pp. 1012–1015).Google Scholar
  14. 14.
    Hein, H., Förtsch, M., & Zimmermann, H. (2005). Low-power 300 Mbit/s OEIC with large-area photodiode. Electronics Letters, 41(7), 436–438. doi: 10.1049/el:20058067.CrossRefGoogle Scholar
  15. 15.
    Gray, P. R., & Meyer, R. G. (1993). Analysis and design of analog integrated circuits (3rd ed.). New York: Wiley.Google Scholar
  16. 16.
    Tadić, N., & Gobović, D. (2001). A voltage-controlled resistor in CMOS technology using bisection of the voltage range. IEEE Transactions on Instrumentation and Measurement, 50, 1704–1710. doi: 10.1109/19.982971.CrossRefGoogle Scholar
  17. 17.
    Tadić, N., & Gobović, D. (2003). Current-controlled CMOS transconductor using bisection of the input voltage. Electronics Letters, 39(1), 45–46. doi: 10.1049/el:20030024.CrossRefGoogle Scholar
  18. 18.
    Huijsing, J. H. (2001). Operational amplifiers—Theory and design. Boston: Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nikša Tadić
    • 1
    Email author
  • Artur Marchlewski
    • 1
  • Horst Zimmermann
    • 1
  1. 1.Faculty of Electrical Engineering and Information Technology, Institute of Electrical Measurements and Circuit DesignVienna University of TechnologyViennaAustria

Personalised recommendations