Skip to main content
Log in

ICCII-based universal current-mode analog filter employing only grounded passive components

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, three versions of a novel second-order current-mode (CM) single-input three-output analog filter employing inverting second-generation current conveyors (ICCIIs) and only grounded passive components, are presented. This filter can simultaneously realize low-pass, band-pass and high-pass responses, and can also realize notch and all-pass filter responses with interconnection of the relevant output currents. The presented second-order filter requires no active and passive element matching conditions and/or cancellation constraints. The proposed filter offers orthogonal control of angular resonance frequency (ωo) and quality factor (Q). The proposed filter can realize filter responses at high output impedances, and has low active and passive component sensitivities. Additionally, three versions of a high-order filter derived from the proposed filter are introduced. Simulation results using SPICE program are given to show the performance of the filter and verify the theory. Signal limitations and non-ideal current and voltage gain effects of the proposed second-order filter are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chang, C. M., & Chen, P. C. (1991). Realization of current-mode transfer function using second-generation current conveyors. International Journal of Electronics, 71(5), 809–815.

    Article  MathSciNet  Google Scholar 

  2. Awad, I. A., & Soliman, A. M. (1999). Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. International Journal of Electronics, 86, 413–432.

    Article  Google Scholar 

  3. Ozoguz, S., Toker, A., & Cicekoglu, O. (2000). First-order all-pass sections-based current-mode universal filter using ICCIIs. Electronics Letters, 36, 1443–1444.

    Article  Google Scholar 

  4. Chang, C. M. (1993). Novel universal current–mode filter with single input and three outputs using only current conveyors. Electronics Letters, 29, 2005–2007.

    Article  Google Scholar 

  5. Chang, C. M. (1993). Universal active current filter with single input and three outputs using CCIIs. Electronics Letters, 29, 1932–1933.

    Article  Google Scholar 

  6. Özoğuz, S., & Acar, C. (1997). Universal current-mode filter with reduced number of active and passive components. Electronics Letters, 33, 948–949.

    Article  Google Scholar 

  7. Hou, C. L., & Wu, J. S. (1997). Universal current-mode biquad using only four CCIIs. International Journal of Electronics, 82, 125–129.

    Article  Google Scholar 

  8. Fabre, A., & Alami, M. (1995). Universal current mode biquad implemented from two second generation current conveyors. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 42, 383–385.

    Article  Google Scholar 

  9. Chang, C. M., & Chen, P. C. (1991). Universal active current filter with three inputs and one output using current conveyors. International Journal of Electronics, 71, 817–819.

    Article  Google Scholar 

  10. Yuce, E., Metin, B., & Cicekoglu, O. (2004). Current-mode biquadratic filters using single CCIII and minimum number of passive elements. Frequenz, 58, 225–228.

    Google Scholar 

  11. Soliman, A. M. (1998). Generation of CCII and CFOA filters from passive RLC filters. International Journal of Electronics, 85, 293–312.

    Article  Google Scholar 

  12. Wang, H. Y., & Lee, C. T. (2001). Versatile insensitive current-mode universal biquad implementation using current conveyors. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 48, 409–413.

    Article  Google Scholar 

  13. Abuelma’atti, M. T., & Al-Zaher, H. A. (1999). Universal two-input two-output current-mode active biquad using FTFNs. International Journal of Electronics, 86, 181–188.

    Article  Google Scholar 

  14. Liu, S. I., & Hwang, C. S. (1997). Realization of current-mode filters using single FTFN. International Journal of Electronics, 82, 499–502.

    Article  Google Scholar 

  15. Chang, C. M., & Pai, S. K. (2000). Universal current-mode OTA-C biquad with the minimum components. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 47(8), 1235–1238.

    Article  Google Scholar 

  16. Chang, C. M. (1999). New multifunction OTA-C biquads. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 46(6), 820–824.

    Article  Google Scholar 

  17. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 43, 82–91.

    Article  Google Scholar 

  18. Minaei, S., & Yuce, E. (2007). Current-mode active-C filter employing reduced number of CCCII + s. Journal of Circuits Systems and Computers, 16(4), 507–516.

    Article  Google Scholar 

  19. Minaei, S., & Yuce, E. (2006). Universal current-mode active-C filters employing only plus-type current controlled conveyors. Frequenz, 60(7–8), 134–137.

    Google Scholar 

  20. Khan, I. A., & Zaidi, M. H. (2000). Multifunctional translinear-C current-mode filter. International Journal of Electronics, 87, 1047–1051.

    Article  Google Scholar 

  21. Chang, C. M., Al-Hashimi, B. M., & Ross, J. N. (2004). Unified active filter biquad structures. IEE Proceedings Circuit Devices Systems, 151, 272–277.

    Google Scholar 

  22. Minaei, S., & Turkoz, S. (2004). Current-mode electronically current-controlled universal filter using only plus-type current controlled conveyors and grounded capacitors. ETRI Journal, 26, 292–296.

    Google Scholar 

  23. Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Universal current-mode active-C filter employing minimum number of passive elements. Analog Integrated Circuits and Signal Processing, 46, 169–171.

    Article  Google Scholar 

  24. Sagbas, M., & Fidanboylu, K. (2004). Electronically tunable current-mode second-order universal filter using minimum elements. Electronics Letters, 40, 2–4.

    Article  Google Scholar 

  25. Yuce, E., Minaei, S., & Metin, B. (2005). Comments on Electronically tunable current-mode second-order universal filter using minimum elements. Electronics Letters, 41, 453.

    Article  Google Scholar 

  26. Anday, F., & Gunes, E. O. (1992). Realization of nth-order transfer functions using current conveyors. International Journal of Circuit Theory and Applications, 20, 693–696.

    Article  Google Scholar 

  27. Acar, C. (1996). Nth-order lowpass voltage transfer function synthesis using CCII + s: Signal-flow graph approach. Electronics Letters, 32, 159–160.

    Article  Google Scholar 

  28. Acar, C., & Ozoguz, S. (1996). High-order voltage transfer function synthesis using CCII+ based unity gain current amplifiers. Electronics Letters, 32, 2030–2031.

    Article  Google Scholar 

  29. Gunes, E. O., & Anday, F. (1999). An nth-order allpass voltage transfer function synthesis using commercially available active components. Microelectronics Journal, 30, 895–898.

    Article  Google Scholar 

  30. Yuce, E., & Minaei, S. (2008). On the realization of high-order current-mode filter employing current controlled conveyors. Computers & Electrical Engineering, 34, 165–172.

    Article  MATH  Google Scholar 

  31. Wilson, B. (1990). Recent developments in current conveyors and current-mode circuits. IEE Proceedings Circuits, Systems and Devices, 137, 63–77.

    Article  Google Scholar 

  32. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analog IC design: The current-mode approach. London: Peter Peregrinus.

    Google Scholar 

  33. Ferri, G., & Guerrini, N. C. (2003). Low-voltage low-power CMOS current conveyors. London: Kluwer Academic Publishers.

    Google Scholar 

  34. Deliyannis, T., Sun, Y., & Fidler, J. K. (1999). Continuous-time active filter design. Boca Raton: CRC Press. Chapter 3 and Chapter 10.

    Google Scholar 

  35. Minaei, S., Sayin, O. K., & Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Transactions on Circuits and Systems Part-I: Regular Papers, 53, 1448–1457.

    Article  Google Scholar 

  36. Wang, Z. (1990). Novel voltage-controlled grounded resistor. Electronics Letters, 26, 1711–1712.

    Article  Google Scholar 

  37. Zeki, A., & Toker, A. (2005). DXCCII-based tunable gyrator. International Journal of Electronics and Communications (AEÜ), 59, 59–62.

    Article  Google Scholar 

  38. Yuce, E., & Minaei, S. (2008). Signal limitations of the current-mode filters employing current conveyors. International Journal of Electronics and Communications (AEÜ), 62, 193–198.

    Article  Google Scholar 

  39. Yuce, E., Tokat, S., Minaei, S., & Cicekoglu, O. (2007). Stability problems in universal current-mode filters. International Journal of Electronics and Communications (AEÜ), 61(9), 580–588.

    Article  Google Scholar 

  40. Yuce, E., Kircay, A., & Tokat, S. (2008). Universal resistorless current-mode filters employing CCCIIs. International Journal of Circuit Theory and Application, 36, 739–755.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Minaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuce, E., Minaei, S. ICCII-based universal current-mode analog filter employing only grounded passive components. Analog Integr Circ Sig Process 58, 161–169 (2009). https://doi.org/10.1007/s10470-008-9225-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-008-9225-2

Keywords

Navigation