Skip to main content

Advertisement

Log in

DC–DC converter for fuel-cells and portable devices in digital CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The manuscript discusses the design of an integrated DC–DC power converter in a digital 0.18 μm CMOS technology for fuel cells and portable applications. By means of a combined boost and switched-capacitor architecture and design optimization a suitable efficiency has been achieved without resorting to special process options and with a limited number of passive external components. The achieved results enable the implementation of a power-converter system for fuel-cell featuring low-cost and small size, as required by the market of portable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. EG&G Services, Parsons Inc. and Science Applications Int. Corp. (2000). Fuel cell Handbook (5th ed.), available on-line at http://www.fuelcells.org/info/library/fchandbook.pdf.

  2. Elias, M. F. M., Nor, K. M., & Arof, A. K. (2005). Design of smart charger for series Lithium-Ion batteries. Proc. of IEEE PEDS, pp. 1485–1490.

  3. Kimball, J. W., Flowers, T. L., & Champman, P. L. (2004). Low-input-voltage, low-power boost converter design issues. IEEE Power Electronics Letters, 2(3), 96–99.

    Article  Google Scholar 

  4. Erickson, R., & Maksimovic, D. (2001). Fundamentals of power electronics (2nd ed.). Kluwer Academic Publishers.

  5. Dessouky, M., & Kaiser, A. (1999). Input switch configuration for rail-to-rail operation of switched opamp circuits. Electronics Letters, 35(1), 810.

    Article  Google Scholar 

  6. Abo, A. M., & Gray, P. R. (1999). A 1.5-V 10-bit 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE Journal of Solid-State Circuits, 34, 599–606.

    Article  Google Scholar 

  7. Tanzawa, T., & Tanaka, T. (1997). A dynamic analysis of the Dickson charge pump circuit. IEEE Journal of Solid-State Circuits, 32(8), 1231–1240.

    Article  Google Scholar 

  8. Baderna, D., Cabrini, A., Torelli, G., & Pasotti, M. (2005). Efficiency comparison between Doubler and Dickson charge pumps. Proc. of Int. Symp. on Circuits and Systems 2005, May 2005, pp. 1891–1894.

  9. Arntzen, B., & Maksimovic, D. (1998). Switched capacitor DC/DC converters with resonant gate drive. IEEE Transactions on Power Electronics, 13(5), 892–902.

    Article  Google Scholar 

  10. Makowski, M. S., & Maksimovic, D. (1995). Performance limits of Switched-capacitor DC–DC converters. Proc. of Power Electronics Specialists Conference, June 1995, pp. 1215–1221.

  11. Ngo, K. D. T., & Webster, R. (1994). Steady-state analysis and design of a switched-capacitor DC–DC converter. IEEE Transactions on Aerospace and Electronic Systems, 30(1), 92–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Boni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boni, A., Carboni, A. & Facen, A. DC–DC converter for fuel-cells and portable devices in digital CMOS technology. Analog Integr Circ Sig Process 55, 93–102 (2008). https://doi.org/10.1007/s10470-008-9152-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-008-9152-2

Keywords

Navigation