Skip to main content
Log in

Parasitic-aware analytical modeling of integrated CMOS inductively degenerated narrow-band low noise amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we present an analytical modeling methodology for fully integrated inductively-degenerated CMOS narrow-band cascode Low Noise Amplifiers (LNA) that captures short channel transistor effects to enable rapid design space exploration in current and future process technologies. The modeling methodology captures the impact of parasitics on passive components, ESD-protection structures, and devices to accurately predict both impedance matching and noise figure. Our modeling is suitable for numerical optimization and fully automated synthesis for LNAs. The results indicate that the methodology models ESD-protected LNA circuits with 47.9% better accuracy in noise figure when compared with several current analytical modeling techniques with four orders of magnitude improvement in simulation time over circuit-level simulation. Given its speed and accuracy, the analytical modeling methodology is well-suited for design space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Smedt, B., & Gielen, G. (2003). WATSON: Design space boundary exploration and model generation for Analog and RFIC Design. IEEE transactions on computer-aided design of integrated circuits and systems, 22(2), 213–224.

    Article  Google Scholar 

  2. Nieuwoudt, A., & Massoud, Y. (2005). Robust automated synthesis methodology for integrated spiral inductors with variability. Proceedings of the IEEE/ACM International Conference on computer-aided design 502–507.

  3. Leenaerts, D., Gielen, G., & Rutenbar, R. A. (2001). CAD solutions and outstanding challenges for mixed-signal and RF IC design. Proceedings of the IEEE/ACM International Conference on computer-aided design 270–277.

  4. Shaeffer, D. K., & Lee, T. H. (1997). A 1.5-V, 1.5-Ghz CMOS low noise amplifier. IEEE Journal of Solid-State Circuits, 32(5), 745–759.

    Article  Google Scholar 

  5. Goo, J.-S., Ahn, H.-T., Ladwig, D., Yu, Z., Lee, T., & Dutton, R. (2002). A noise optimization technique of integrated low-noise amplifiers. IEEE Journal of Solid-State Circuits 37(8), 994–1002.

    Article  Google Scholar 

  6. Chen, J., & Shi, B. (2002). Impact of intrinsic channel resistance on noise performance of CMOS LNA. IEEE Electron Device Letters, 23(1), 34–36.

    Article  Google Scholar 

  7. Nguyen, T.-K., Kim, C.-H., Ihm, G.-J., Yang, M.-S., Lee, S.-G. (2004). CMOS low-noise amplifier design optimization techniques. IEEE Transactions on Microwave Theory and Techniques, 52(5), 1433–1442.

    Article  Google Scholar 

  8. Govind, V., Dalmia, S., & Swaminathan, M. (2004). Design of integrated low noise amplifiers (LNA) using embedded passives in organic substrates. IEEE Transactions on Advanced Packaging, 27(1), 79–89.

    Article  Google Scholar 

  9. Guermandi, D., Franchi, E., & Gnudi, A. (2004). A design flow for inductively degenerated LNA’s. Proceedings of IEEE International Conference on Electronics, Circuits and Systems, 615–618.

  10. Chiu, H.-W., Lu, S.-S., & Lin, Y.-S. (2005). A 2.17-dB NF 5-GHz-Band monolithic CMOS LNA with 10-mW DC power consumption. IEEE Transactions on Microwave Theory and Techniques, 27(1), 813–824.

    Article  Google Scholar 

  11. Linten, D., et al. (2005). A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS. IEEE Journal of Solid-State Circuits, 40(7), 1434–1442.

    Article  Google Scholar 

  12. Telli, A., & Askar, M. (2004). CMOS LNA design for system-on-chip receiver Stages. Proceedings of IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 171–174, September

  13. Nieuwoudt, A., Ragheb, T., & Massoud, Y. (2006). SOC-NLNA: synthesis and optimization for fully integrated narrow-band CMOS low noise amplifiers. Proceedings of the IEEE/ACM Design Automation Conference, 879–884.

  14. Nieuwoudt, A., & Massoud, Y. (2007). Analytical wide-band modeling of high frequency resistance in integrated spiral inductors. Analog Integrated Circuits and Signal Processing, 50(2), 133–136.

    Article  Google Scholar 

  15. Cao, Y., et al. (2003). Frequency-independent equivalent-circuit model for on-chip spiral inductors. IEEE Journal of Solid-State Circuits, 38(3), 419–426.

    Article  Google Scholar 

  16. Nieuwoudt, A., & Massoud, Y. (2005). Multi-level approach for integrated spiral inductor optimization. Proceedings of the IEEE/ACM Design Automation Conference, 648–651.

  17. Nieuwoudt, A., McCorquodale, M. S., Borno, R. T., & Massoud, Y., (2005). Efficient analytical modeling techniques for rapid integrated spiral inductor prototyping. Proceedings of the IEEE Custom Integrated Circuits Conference, 281–284.

  18. Nieuwoudt, A., McCorquodale, M. S., Borno, R. T., & Massoud, Y. (2006). Accurate analytical spiral inductor modeling techniques for efficient design space exploration. IEEE Electron Device Letters, 27(12), 998–1001.

    Article  Google Scholar 

  19. Leroux, P., & Steyaert, M. (2005). RF-ESD design and measurement of CMOS LNAs: A comparison between diode and inductive protection. Proceedings of IEEE International Conference on Microelectronic Test Structures, 171–176.

  20. Tsui, H.-Y., & Lau, J. (2000). SPICE simulation and tradeoffs of CMOS LNA performance with source-degeneration inductor. IEEE Transactions on Circuits and Systems - II, 47(1), 62–65.

    Article  Google Scholar 

  21. Scholten, A. J., et al. (2003). Noise modeling for RF CMOS circuit simulation. IEEE Transactions on Electron Devices, 50(3), 618–632.

    Article  MathSciNet  Google Scholar 

  22. “SpectreRF,” cadence design systems, (2005).

  23. Andreani, P., & Sjoland, H. (2001). Noise optimization of an inductively degenerated CMOS low noise amplifier. IEEE Transactions on Circuits and Systems - II, 48(9), 835–841.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehia Massoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragheb, T., Nieuwoudt, A. & Massoud, Y. Parasitic-aware analytical modeling of integrated CMOS inductively degenerated narrow-band low noise amplifiers. Analog Integr Circ Sig Process 51, 11–17 (2007). https://doi.org/10.1007/s10470-007-9042-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-007-9042-z

Keywords

Navigation