Skip to main content
Log in

A Criterion for Nonsolvability of a Finite Group and Recognition of Direct Squares of Simple Groups

Algebra and Logic Aims and scope

The spectrum ω(G) of a finite group G is the set of orders of its elements. The following sufficient criterion of nonsolvability is proved: if, among the prime divisors of the order of a group G, there are four different primes such that ω(G) contains all their pairwise products but not a product of any three of these numbers, then G is nonsolvable. Using this result, we show that for q ⩾ 8 and q ≠ 32, the direct square Sz(q) × Sz(q) of the simple exceptional Suzuki group Sz(q) is uniquely characterized by its spectrum in the class of finite groups, while for Sz(32) × Sz(32), there are exactly four finite groups with the same spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. A. Grechkoseeva, V. D. Mazurov, W. Shi, A. V. Vasil’ev, and N. Yang, “Finite groups isospectral to simple groups,” Comm. Math. Stat., 2022; https://doi.org/10.1007/s40304-022-00288-5.

  2. J. Zhang, “Arithmetical conditions on element orders and group structure,” Proc. Am. Math. Soc., 123, No. 1, 39-44 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. T. M. Keller, “Solvable groups with a small number of prime divisors in the element orders,” J. Alg., 170, No. 2, 625-648 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. I. B. Gorshkov and N. V. Maslova, “The group J4 × J4 is recognizable by spectrum,” J. Alg. Appl., 20, No. 4 (2021), Article ID 2150061.

  5. A. V. Vasil’ev and E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra and Logic, 50, No. 4, 291-322 (2011).

  6. V. D. Mazurov, “Recognition of finite nonsimple groups by the set of orders of their elements,” Algebra and Logic, 36, No. 3, 182-192 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Shi, “A characterization of Suzuki’s simple groups,” Proc. Am. Math. Soc., 114, No. 3, 589-591 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. D. Podufalov, “Finite simple groups without elements of sixth order,” Algebra and Logic, 16, No. 2, 133-135 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. M. Gordon, “Finite simple groups with no elements of order six,” Bull. Aust. Math. Soc., 17, No. 2, 235-246 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. R. Fletcher, B. Stellmacher, and W. B. Stewart, “Endliche Gruppen, die kein Element der Ordnung 6 enthalten,” Q. J. Math., Oxford II. Ser., 28, No. 110, 143-154 (1977).

  11. A. S. Bang, “Talteoretiske undersogelser,” Tidsskrift for Math., 5. Ser., 4, 70-80 (1886); 4, 130-137 (1886).

  12. K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys., 3, 265-284 (1892).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Higman, “Finite groups in which every element has prime power order,” J. London Math. Soc., 32, 335-342 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Hall and G. Higman, “On the p-length of p-soluble groups and reduction theorems for Burnside’s problem,” Proc. London Math. Soc., III. Ser., 6, No. 1, 1-42 (1956).

  15. A. V. Zavarnitsine and V. D. Mazurov, “Element orders in coverings of symmetric and alternating groups,” Algebra and Logic, 38, No. 3, 159-170 (1999).

    Article  MathSciNet  Google Scholar 

  16. V. D. Mazurov, “Characterizations of finite groups by sets of orders of their elements,” Algebra and Logic, 36, No. 1, 23-32 (1997).

    Article  MathSciNet  Google Scholar 

  17. A. V. Vasil’ev, “On finite groups isospectral to simple classical groups,” J. Alg., 423, 318-374 (2015).

  18. M. Suzuki, “On a class of doubly transitive groups,” Ann. Math., II. Ser., 75, No. 1, 105-145 (1962).

  19. J. L. Alperin and D. Gorenstein, “The multiplicators of certain simple groups,” Proc. Am. Math. Soc., 17, 515-519 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. H. Tiep and A. E. Zalesski, “Hall–Higman type theorems for exceptional groups of Lie type, I,” J. Alg., 607, Part A, 755-794 (2022).

  21. M. A. Grechkoseeva, “Orders of elements of finite almost simple groups,” Algebra and Logic 56, No. 6, 502-505 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Gorenstein, Finite Groups, Harper’s Ser. Modern Math., Harper & Row, New York (1968).

  23. M. S. Lucido, “Prime graph components of finite almost simple groups,” Rend. Semin. Mat. Univ. Padova, 102, 1-22 (1999).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deep gratitude and admiration to V. D. Mazurov whose article [6] served as a source of inspiration for this paper. Thanks also are due to A. A. Buturlakin and the reviewer for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. Wang.

Additional information

Translated from Algebra i Logika, Vol. 61, No. 4, pp. 424-442, July-August, 2022. Russian https://doi.org/10.33048/alglog.2022.61.403.

Dedicated to V. D. Mazurov on the occasion of his 80th birthday

Supported by the National Natural Science Foundation of China (NSFC), grant No. 12171126. (A. V. Vasil’ev)

Supported by the Program of Fundamental Research RAS, project FWNF-2022-0002. (A. V. Vasil’ev and M. A. Grechkoseeva)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Vasil’ev, A.V., Grechkoseeva, M.A. et al. A Criterion for Nonsolvability of a Finite Group and Recognition of Direct Squares of Simple Groups. Algebra Logic 61, 288–300 (2022). https://doi.org/10.1007/s10469-023-09697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-023-09697-z

Keywords

Navigation