Let m be a positive integer and let Ω be a finite set. The m-closure of G ≤ Sym(Ω) is the largest permutation group G(m) on Ω having the same orbits as G in its induced action on the Cartesian product Ωm. An exact formula for the m-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this m-closure to be included in the wreath product of the m-closures of the factors.
References
H. Wielandt, “Permutation groups through invariant relation and invariant functions,” Lect. Notes Dept. Math. Ohio St. Univ., Columbus (1969), in H. Wielandt, Mathematische Werke. Mathematical Works, Vol. 1: Group Theory, B. Huppert and H. Schneider (eds.), Walter de Gruyter, Berlin (1994), pp. 237-266.
C. E. Praeger and J. Saxl, “Closures of finite primitive permutation groups,” Bull. London Math. Soc., 24, No. 3, 251-258 (1992).
J. Xu, M. Giudici, C. H. Li, and C. E. Praeger, “Invariant relations and Aschbacher classes of finite linear groups,” El.. J. Comb., 18, No. 1 (2011), Research paper P225.
E. A. O’Brien, I. Ponomarenko, A. V. Vasil’ev, and E. Vdovin, “The 3-closure of a solvable permutation group is solvable,” J. Alg. (2021), 10.1016/j.jalgebra.2021.07.002.
S. Evdokimov and I. Ponomarenko, “Two-closure of odd permutation group in polynomial time,” Discr. Math., 235, Nos. 1-3, 221-232 (2001).
I. Ponomarenko and A. Vasil’ev, “Two-closure of supersolvable permutation group in polynomial time,” Comput. Compl., 29, No. 1 (2020), Paper No. 5; 10.1007/s00037-020-00195-7.
M. W. Liebeck, C. E. Praeger, and J. Saxl, “On the 2-closures of finite permutation groups,” J. London Math. Soc., II. Ser., 37, No. 2, 241-252 (1988).
D. V. Churikov, “Structure of k-closures of finite nilpotent permutation groups,” Algebra and Logic, 60, No. 2, 154-159 (2021).
L. A. Kaluzhnin and M. Kh. Klin, “On some numerical invariants of permutation groups,” Latv. Mat. Ezhegod., 18, No. 1, 81-99 (1976).
´A. Seress, “Primitive groups with no regular orbits on the set of subsets,” Bull. London Math. Soc., 29, No. 6, 697-704 (1997).
J. D. Dixon and B. Mortimer, Permutation Groups, Grad. Texts Math., 163, Springer, New York (1996).
A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb., 3. Folge, 18, Springer-Verlag, Berlin (1989).
The GAP Group, GAP—Groups, Algorithms, Programming—A System for Computational Discrete Algebra, vers. 4.11.1 (2021); https://www.gap-system.org.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by Mathematical Center in Akademgorodok, Agreement with RF Ministry of Education and Science No. 075-15-2019-1613.
Translated from Algebra i Logika, Vol. 60, No. 3, pp. 286-297, May-June, 2021. Russian DOI: https://doi.org/10.33048/alglog.2021.60.302.
Rights and permissions
About this article
Cite this article
Vasil’ev, A.V., Ponomarenko, I.N. The Closures of Wreath Products in Product Action. Algebra Logic 60, 188–195 (2021). https://doi.org/10.1007/s10469-021-09640-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10469-021-09640-0