Skip to main content
Log in

The Closures of Wreath Products in Product Action

Algebra and Logic Aims and scope

Let m be a positive integer and let Ω be a finite set. The m-closure of G ≤ Sym(Ω) is the largest permutation group G(m) on Ω having the same orbits as G in its induced action on the Cartesian product Ωm. An exact formula for the m-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this m-closure to be included in the wreath product of the m-closures of the factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. H. Wielandt, “Permutation groups through invariant relation and invariant functions,” Lect. Notes Dept. Math. Ohio St. Univ., Columbus (1969), in H. Wielandt, Mathematische Werke. Mathematical Works, Vol. 1: Group Theory, B. Huppert and H. Schneider (eds.), Walter de Gruyter, Berlin (1994), pp. 237-266.

  2. C. E. Praeger and J. Saxl, “Closures of finite primitive permutation groups,” Bull. London Math. Soc., 24, No. 3, 251-258 (1992).

    Article  MathSciNet  Google Scholar 

  3. J. Xu, M. Giudici, C. H. Li, and C. E. Praeger, “Invariant relations and Aschbacher classes of finite linear groups,” El.. J. Comb., 18, No. 1 (2011), Research paper P225.

  4. E. A. O’Brien, I. Ponomarenko, A. V. Vasil’ev, and E. Vdovin, “The 3-closure of a solvable permutation group is solvable,” J. Alg. (2021), 10.1016/j.jalgebra.2021.07.002.

  5. S. Evdokimov and I. Ponomarenko, “Two-closure of odd permutation group in polynomial time,” Discr. Math., 235, Nos. 1-3, 221-232 (2001).

  6. I. Ponomarenko and A. Vasil’ev, “Two-closure of supersolvable permutation group in polynomial time,” Comput. Compl., 29, No. 1 (2020), Paper No. 5; 10.1007/s00037-020-00195-7.

  7. M. W. Liebeck, C. E. Praeger, and J. Saxl, “On the 2-closures of finite permutation groups,” J. London Math. Soc., II. Ser., 37, No. 2, 241-252 (1988).

  8. D. V. Churikov, “Structure of k-closures of finite nilpotent permutation groups,” Algebra and Logic, 60, No. 2, 154-159 (2021).

  9. L. A. Kaluzhnin and M. Kh. Klin, “On some numerical invariants of permutation groups,” Latv. Mat. Ezhegod., 18, No. 1, 81-99 (1976).

    MathSciNet  MATH  Google Scholar 

  10. ´A. Seress, “Primitive groups with no regular orbits on the set of subsets,” Bull. London Math. Soc., 29, No. 6, 697-704 (1997).

  11. J. D. Dixon and B. Mortimer, Permutation Groups, Grad. Texts Math., 163, Springer, New York (1996).

  12. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb., 3. Folge, 18, Springer-Verlag, Berlin (1989).

  13. The GAP Group, GAP—Groups, Algorithms, Programming—A System for Computational Discrete Algebra, vers. 4.11.1 (2021); https://www.gap-system.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vasil’ev.

Additional information

Supported by Mathematical Center in Akademgorodok, Agreement with RF Ministry of Education and Science No. 075-15-2019-1613.

Translated from Algebra i Logika, Vol. 60, No. 3, pp. 286-297, May-June, 2021. Russian DOI: https://doi.org/10.33048/alglog.2021.60.302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.V., Ponomarenko, I.N. The Closures of Wreath Products in Product Action. Algebra Logic 60, 188–195 (2021). https://doi.org/10.1007/s10469-021-09640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-021-09640-0

Keywords

Navigation