Skip to main content
Log in

Khutoretskii’s Theorem for Generalized Computable Families

  • Published:
Algebra and Logic Aims and scope

We give sufficient conditions for generalized computable numberings to satisfy the statement of Khutoretskii’s theorem. This implies limitedness of universal \( {\varSigma}_{\alpha}^0- \) computable numberings for 2 \( \le \alpha <{\omega}_1^{CK}. \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Khutoretskii, “On the cardinality of the upper semilattice of computable enumerations,” Algebra and Logic, 10, No. 5, 348-352 (1971).

    Article  MathSciNet  Google Scholar 

  2. S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra and Logic, 36, No. 6, 359-369 (1997).

    Article  MathSciNet  Google Scholar 

  3. S. A. Badaev and S. S. Goncharov, “Generalized computable universal numberings,” Algebra and Logic, 53, No. 5, 355-364 (2014).

    Article  MathSciNet  Google Scholar 

  4. S. A. Badaev and S. Yu. Podzorov, “Minimal coverings in the Rogers semilattices of \( {\varSigma}_n^0- \) computable numberings,” Sib. Math. J., 43, No. 4, 616-622 (2002).

  5. S. Yu. Podzorov, “The limit property of the greatest element in the Rogers semilattice,” Math. Trudy, 7, No. 2, 98-108 (2004).

    MathSciNet  MATH  Google Scholar 

  6. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Completeness and universality of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 11-44.

  7. M. Kh. Faizrakhmanov, “The Rogers semilattices of generalized computable enumerations,” Sib. Math. J., 58, No. 6, 1104-1110 (2017).

    Article  MathSciNet  Google Scholar 

  8. M. Kh. Faizrakhmanov, “Universal generalized computable numberings and hyperimmunity,” Algebra and Logic, 56, No. 4, 337-347 (2017).

    Article  MathSciNet  Google Scholar 

  9. Yu. L. Ershov, Theory of Numerations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  10. R. I. Soare, Recursively Enumerable Sets and Degrees, Perspect. Math. Log., Omega Ser., Springer-Verlag, Heidelberg (1987).

  11. P. G. Odifreddi, Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers, Stud. Log. Found. Math., 125, North-Holland, Amsterdam (1989).

  12. C. G. Jockusch, Jr., “Degrees in which the recursive sets are uniformly recursive,” Can. J. Math., 24, 1092-1099 (1972).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Faizrakhmanov.

Additional information

The work was carried out at the expense of the subsidy allocated to Kazan (Volga Region) Federal University for the fulfillment of the state task in the sphere of scientific activity, project No. 1.1515.2017/4.6.

Translated from Algebra i Logika, Vol. 58, No. 4, pp. 528-541, July-August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizrakhmanov, M.K. Khutoretskii’s Theorem for Generalized Computable Families. Algebra Logic 58, 356–365 (2019). https://doi.org/10.1007/s10469-019-09557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-019-09557-9

Keywords

Navigation