Skip to main content
Log in

Orbits of Maximal Vector Spaces

  • Published:
Algebra and Logic Aims and scope

Let V be a standard computable infinite-dimensional vector space over the field of rationals. The lattice \( \mathfrak{L} \)(V ) of computably enumerable vector subspaces of V and its quotient lattice modulo finite dimension, \( \mathfrak{L} \) *(V ), have been studied extensively. At the same time, many important questions still remain open. In 1998, R. Downey and J. Remmel posed the question of finding meaningful orbits in \( \mathfrak{L} \) *(V ) [4, Question 5.8]. This question is important and difficult and its answer depends on significant progress in the structure theory for the lattice \( \mathfrak{L} \) *(V ), and also on a better understanding of its automorphisms. Here we give a necessary and sufficient condition for quasimaximal (hence maximal) vector spaces with extendable bases to be in the same orbit of \( \mathfrak{L} \) *(V ). More specifically, we consider two vector spaces, V 1 and V 2 , which are spanned by two quasimaximal subsets of, possibly different, computable bases of V . We give a necessary and sufficient condition for the principal filters determined by V 1 and V 2 in \( \mathfrak{L} \) *(V ) to be isomorphic. We also specify a necessary and sufficient condition for the existence of an automorphism Φ of \( \mathfrak{L} \) *(V ) such that Φ maps the equivalence class of V 1 to the equivalence class of V 2 . Our results are expressed using m-degrees of relevant sets of vectors. This study parallels the study of orbits of quasimaximal sets in the lattice ε of computably enumerable sets, as well as in its quotient lattice modulo finite sets, ε* , carried out by R. Soare in [13]. However, our conclusions and proof machinery are quite different from Soare’s. In particular, we establish that the structure of the principal filter determined by a quasimaximal vector space in \( \mathfrak{L} \) *(V ) is generally much more complicated than the one of a principal filter determined by a quasimaximal set in ε* . We also state that, unlike in ε* , having isomorphic principal filters in \( \mathfrak{L} \) *(V ) is merely a necessary condition for the equivalence classes of two quasimaximal vector spaces to be in the same orbit of \( \mathfrak{L} \) *(V ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Mal’tsev, “On recursive Abelian groups,” Dokl. Akad. Nauk SSSR, 146, No. 5, 1009–1012 (1962).

    MathSciNet  MATH  Google Scholar 

  2. J. C. Dekker, “Countable vector spaces with recursive operations. I,” J. Symb. Log., 34, 363–387 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Metakides and A. Nerode, “Recursively enumerable vector spaces,” Ann. Math. Log., 11, 147–171 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. G. Downey and J. B. Remmel, “Computable algebras and closure systems: Coding properties,” in Handbook of Recursive Mathematics, Stud. Log. Found. Math., 139, Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (eds.), Elsevier, Amsterdam (1998), pp. 997–1039.

  5. A. S. Morozov, “Groups of computable automorphisms, in Handbook of Recursive Mathematics, Stud. Log. Found. Math., 138, Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (eds.), Elsevier, Amsterdam (1998), pp. 311–345.

  6. A. Nerode and J. B. Remmel, A survey of lattices of r.e. substructures, in Recursion Theory, Proc. Symp. Pure Math., 42, A. Nerode and R. Shore (eds.), Am. Math. Soc., Providence, RI (1985), pp. 323–375.

  7. C. J. Conidis, “Infinite dimensional proper subspaces of computable vector spaces,” J. Alg., 406, 346–375 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. G. Downey, D. R. Hirschfeldt, A. M. Kach, S. Lempp, J. R. Mileti, and A. Montalb´an, “Subspaces of computable vector spaces,” J. Alg., 314, No. 2, 888–894 (2007).

  9. R. M. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication,” J. Symb. Log., 23, No. 3, 309–316 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. A. Martin, “Classes of recursively enumerable sets and degree of unsolvability,” Z. Math. Log. Grund. Math., 12, No. 4, 295–310 (1966).

    Article  MATH  Google Scholar 

  11. C. F. Kent, “Constructive analogues of the group of permutations of the natural numbers,” Trans. Am. Math. Soc., 104, No. 2, 347–362 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. I. Soare, Recursively Enumerable Sets and Degrees, Perspect. Math. Log., Omega Ser., Springer-Verlag, Heidelberg (1987).

  13. R. I. Soare, “Automorphisms of the lattice of recursively enumerable sets. I: Maximal sets,” Ann. Math. (2), 100, 80–120 (1974).

  14. I. Kalantari and A. Retzlaff, “Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces,” J. Symb. Log., 42, 481–491 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Remmel, “On r. e. and co-r. e. vector spaces with nonextendible bases,” J. Symb. Log., 45, 20–34 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. R. Guichard, “Automorphisms of substructure lattices in recursive algebra,” Ann. Pure Appl. Log., 25, 47–58 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. R. Hird, “Recursive properties of relations on models,” Ann. Pure Appl. Log., 63, No. 3, 241–269 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. G. Downey and G. R. Hird, “Automorphisms of supermaximal subspaces,” J. Symb. Log., 50, 1–9 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. D. Dimitrov, “Quasimaximality and principal filters isomorphism between ε* and \( \mathfrak{L} \) *(V ),” Arch. Math. Log., 43, No. 3, 415–424 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. D. Dimitrov, “A class of Σ3 0 modular lattices embeddable as principal filters in \( \mathfrak{L} \) *(V ),” Arch. Math. Log., 47, No. 2, 111–132 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Dimitrov, V. Harizanov, R. Miller, and K. J. Mourad, “Isomorphisms of non-standard fields and Ash’s conjecture,” in Lect. Notes Comput. Sci., 8493, A. Beckmann et al. (eds.), Springer, Berlin (2014), pp. 143–152.

  22. R. D. Dimitrov, “Cohesive powers of computable structures,” Annuaire Univ. Sofia, Fac. Math. Inform., 99, 193–201 (2009).

  23. S. B. Cooper, Computability Theory, Chapman and Hall/CRC Math. Ser., Chapman and Hall/CRC, Boca Raton, FL (2004).

  24. S. S. Goncharov and Yu. L. Ershov, Constructive Models, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).

  25. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  26. R. D. Dimitrov, “Extensions of certain partial automorphisms of \( \mathfrak{L} \) *(V ),” Annuaire Univ. Sofia, Fac. Math. Inform., 99, 183–191 (2009).

  27. E. Artin, Geometric Algebra, Intersci. Tracts Pure Appl. Math., 3, Intersci. Publ., New York (1957).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. D. Dimitrov or V. Harizanov.

Additional information

(V. Harizanov) Supported by the NSF (grant DMS-1202328) and by the GWU Columbian College Facilitating Fund.

Translated from Algebra i Logika, Vol. 54, No. 6, pp. 680–732, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrov, R.D., Harizanov, V. Orbits of Maximal Vector Spaces. Algebra Logic 54, 440–477 (2016). https://doi.org/10.1007/s10469-016-9366-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-016-9366-9

Keywords

Navigation