Skip to main content
Log in

Almost Recognizability by Spectrum of Simple Exceptional Groups of Lie Type

Algebra and Logic Aims and scope

The spectrum of a finite group is the set of its elements orders. Groups are said to be isospectral if their spectra coincide. For every finite simple exceptional group L = E 7(q), we prove that each finite group isospectral to L is isomorphic to a group G squeezed between L and its automorphism group, i.e., L ≤ G ≤ AutL; in particular, up to isomorphism, there are only finitely many such groups. This assertion, together with a series of previously obtained results, implies that the same is true for every finite simple exceptional group except the group 3 D 4(2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W. Shi, “The characterization of the sporadic simple groups by their element orders,” Alg. Coll., 1, No. 2, 159–166 (1994).

    MATH  Google Scholar 

  2. V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements,” Algebra and Logic, 37, No. 6, 371–379 (1998).

    Article  MathSciNet  Google Scholar 

  3. O. A. Alekseeva and A. S. Kondrat’ev, “On recognizability of the group E 8(q) by the set of orders of elements,” Ukr. Math. J., 54, No. 7, 1200–1206 (2002).

    Article  MathSciNet  Google Scholar 

  4. V. D. Mazurov, “Unrecognizability by spectrum for a finite simple group 3 D 4(2),” Algebra and Logic, 52, No. 5, 400–403 (2013).

    Article  MathSciNet  Google Scholar 

  5. W. J. Shi, “A characterization of Suzuki simple groups,” Proc. Am. Math. Soc., 114, No. 3, 589–591 (1992).

    Article  MATH  Google Scholar 

  6. R. Brandl and W. J. Shi, “A characterization of finite simple groups with Abelian Sylow 2-subgroups,” Ric. Mat., 42, No. 1, 193–198 (1993).

    MATH  MathSciNet  Google Scholar 

  7. H. W. Deng and W. J. Shi, “The characterization of Ree groups 2 F 4(q) by their element orders,” J. Alg., 217, No. 1, 180–187 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. V. Vasil’ev, “Recognizability of groups G 2(3n) by their element orders,” Algebra and Logic, 41, No. 2, 74–80 (2002).

    Article  MathSciNet  Google Scholar 

  9. A. V. Vasil’ev and A. M. Staroletov, “Recognizability by spectrum of groups G 2(q),” Algebra and Logic, 52, No. 1, 1–14 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. S. Kondrat’ev, “Recognizability by spectrum of groups E 8(q),” Trudy Inst. Mat. Mekh. UrO RAN, 16, No. 3, 146–149 (2010).

    Google Scholar 

  11. H. P. Cao, G. Chen, M. A. Grechkoseeva, V. D. Mazurov, W. J. Shi, and A. V. Vasil’ev, Recognition of the finite simple groups F 4(2m) by spectrum, Sib. Math. J., 45, No. 6, 1031–1035 (2004).

    Article  MathSciNet  Google Scholar 

  12. A. S. Kondrat’ev, “Recognizability of E 7(2) and E 7(3) by prime graph,” Trudy Inst. Mat. Mekh. UrO RAN, 20, No. 2, 223–229 (2014).

    Google Scholar 

  13. M. A. Grechkoseeva, “On element orders in covers of finite simple groups of Lie type,” J. Alg. Appl., DOI: 10.1142/S0219498815500565.

  14. O. A. Alekseeva and A. S. Kondratiev, “Quasirecognizability by the set of element orders for groups 3D4(q) and F4(q), for q odd,” Algebra and Logic, 44, No. 5, 287–301 (2005).

    Article  MathSciNet  Google Scholar 

  15. O. A. Alekseeva, “Quasirecognizability by the set of element orders for groups 3 D 4(q), for q even,” Algebra and Logic, 45, No. 1, 1–11 (2006).

    Article  MathSciNet  Google Scholar 

  16. O. A. Alekseeva and A. S. Kondratiev, “Quasirecognizability of a class of finite simple groups by the set of element orders,” Sib. Math. J., 44, No. 2, 195–20 (2003).

    Article  Google Scholar 

  17. A. S. Kondrat’ev, “Quasirecognizability by the set of element orders for groups E 6(q) and 2 E 6(q),” Sib. Math. J., 48, No. 6, 1001–1018 (2007).

    Article  Google Scholar 

  18. K. Zsigmondi, “Zur Theorie der Potenzreste,” Mon. Math. Phys., 3, 265–284 (1892).

    Article  Google Scholar 

  19. M. Roitman, “On Zsigmondy primes,” Proc. Am. Math. Soc., 125, No. 7, 1913–1919 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  20. V. V. Prasolov, Polynomials [in Russian], 2nd ed., MTsNMO (2001).

  21. B. Huppert and N. Blackburn, Finite Groups. II, Grundlehren Math. Wiss., 242, Springer-Verlag, Berlin (1982).

  22. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).

    MATH  Google Scholar 

  23. A. V. Vasil’ev, “On connection between the structure of a finite group and properties of its prime graph,” Sib. Math. J., 46, No. 3, 396–404 (2005).

    Article  Google Scholar 

  24. A. V. Vasil’ev and I. B. Gorshkov, “On recognition of finite simple groups with connected prime graph,” Sib. Math. J., 50, No. 2, 233–238 (2009).

    Article  MathSciNet  Google Scholar 

  25. A. V. Vasil’ev and E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group,” Algebra and Logic, 44, No. 6, 381–406 (2005).

    Article  MathSciNet  Google Scholar 

  26. A. V. Vasil’ev and E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra and Logic, 50, No. 4, 291–322 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  27. D. I. Deriziotis and A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type E 6, E 7 and E 8,” Comm. Alg., 19, No. 3, 889–903 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  28. A. A. Buturlakin and M. A. Grechkoseeva, “The cyclic structure of maximal tori of the finite classical groups,” Algebra and Logic, 46, No. 2, 73–89 (2007).

    Article  MathSciNet  Google Scholar 

  29. D. M. Testerman, “A1-type overgroups of order p in semisimple algebraic groups and the associated finite groups,” J. Alg., 177, No. 1, 34–76 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. V. Vasil’ev, M. A. Grechkoseeva, and A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups,” Sib. Math. J., 52, No. 1, 30–40 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  31. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lect. Note Ser., 129, Cambridge Univ., Cambridge (1990).

  32. L. Di Martino and A. E. Zalesskii, “Minimum polynomials and lower bounds for eigenvalues multiplicities of prime-power order elements in representations of classical groups,” J. Alg., 243, No. 1, 228–263 (2001).

    Article  MATH  Google Scholar 

  33. L. Di Martino and A. E. Zalesskii, Corrigendum to: “Minimum polynomials and lower bounds for eigenvalue multiplicities of prime-power order elements in representations of classical groups,” J. Alg., 243, No. 1, 228–263 (2001); J. Alg., 296, No. 1, 249–252 (2006).

  34. A. M. Staroletov, “Sporadic composition factors of finite groups isospectral to simple groups,” Sib. El. Mat. Izv., 8, 268–272 (2011).

    MathSciNet  Google Scholar 

  35. D. I. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups E 7 and E 8,” Tokyo J. Math., 6, No. 1, 191–216 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  36. A. A. Buturlakin, “Spectra of finite linear and unitary groups,” Algebra and Logic, 47, No. 2, 91–99 (2008).

    Article  MathSciNet  Google Scholar 

  37. R. M. Guralnick and P. H. Tiep, “Finite simple unisingular groups of Lie type,” J. Group Theory, 6, No. 3, 271–310 (2003).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Vasil’ev or A. M. Staroletov.

Additional information

Supported by RFBR, grant No. 13-01-00505 (A. V. Vasil’ev).

Supported by RFBR, grant No. 12-01-31221 (A. M. Staroletov).

Translated from Algebra i Logika, Vol. 53, No. 6, pp. 669–692, November-December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.V., Staroletov, A.M. Almost Recognizability by Spectrum of Simple Exceptional Groups of Lie Type. Algebra Logic 53, 433–449 (2015). https://doi.org/10.1007/s10469-015-9305-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-015-9305-1

Keywords

Navigation