Skip to main content
Log in

Generalized Computable Universal Numberings

  • Published:
Algebra and Logic Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We aim to consider the notion of a computable numbering as a uniform enumeration of sets of a family relative to an arbitrary oracle. The questions under investigation concern primarily universal computable numberings. A study of this kind of numberings is mostly motivated by their nature since any universal numbering of a family contains information on all its computable numberings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra and Logic, 36, No. 6, 359–369 (1997).

    Article  MathSciNet  Google Scholar 

  2. S. A.Badaev and S. S.Goncharov, “Theory of numberings: Open problems,” in Computability Theory and Its Applications, Cont. Math., 257, Am. Math. Soc., Providence, R.I. (2000), pp. 23–38.

  3. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Completeness and universality of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 11–44.

    Chapter  Google Scholar 

  4. S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, and A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 45–77.

    Chapter  Google Scholar 

  5. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Isomorphism types and theories of Rogers semilattices of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 79–91.

    Chapter  Google Scholar 

  6. S.A.Badaev andS.S.Goncharov, “Rogerssemilattices offamilies of arithmetic sets,” Algebra and Logic, 40, No. 5, 283–291 (2001).

    Article  MathSciNet  Google Scholar 

  7. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Elementary theories for Rogers semilattices,” Algebra and Logic, 44, No. 3, 143–147 (2005).

    Article  MathSciNet  Google Scholar 

  8. S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy.” Algebra and Logic, 45, No. 6, 361–370 (2006).

    Article  MathSciNet  Google Scholar 

  9. S. A. Badaev and S. Yu. Podzorov, “Minimal coverings in the Rogers semilattices of Σn 0- computable numberings,” Sib. Math. J., 43, No. 4, 616–622 (2002).

    Article  MathSciNet  Google Scholar 

  10. S. Yu. Podzorov, “Initial segments in Rogers semilattices of Σn 0-computable numberings,” Algebra and Logic, 42, No. 2, 121–129 (2003).

    Article  MathSciNet  Google Scholar 

  11. S.Yu. Podzorov, “The limit property ofthe greatestelement inthe Rogerssemilattice,” Math. Trudy, 7, No. 2, 98–108 (2004).

    MathSciNet  MATH  Google Scholar 

  12. S. Yu. Podzorov, “Local structure of Rogers semilattices of Σn 0-computable numberings,” Algebra and Logic, 44, No. 2, 82–94 (2005).

    Article  MathSciNet  Google Scholar 

  13. S. A. Badaev and S. S. Goncharov, “Computability and numberings,” in New Computational Paradigms, S. B.Cooper, B.Lowe, and A.Sorbi (eds.), Springer, New York (2008), pp. 19–34.

    Chapter  Google Scholar 

  14. S. S. Goncharov, “Computable numberings of hyperarithmetical sets and complexity of countable models. Mathematical theory and computational practice,” 5th Conf. on Com- putability in Europe, CiE 2009, Univ. Heidelberg, Heidelberg (2009), pp. 13/14.

    Google Scholar 

  15. Yu. L. Ershov, The Theory of Numberings [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  16. Yu. L. Ershov, “Theory of numberings,” in Handbook of Computability Theory, Stud. Log. Found. Math., 140, North-Holland, Amsterdam (1999), pp. 473–503.

  17. A. I. Mal’tsev, “Sets with complete numberings,” Algebra Logika, 2, No. 2, 4–29 (1963).

    MATH  Google Scholar 

  18. A.H.Lachlan, “Standard classesofrecursively enumerable sets,” Z. Math. Log. Grund. Math. , 10, No. 1, 23–42 (1964). 19. R. F. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication,” J. Symb. Log., 23, No. 3, 309–316 (1958).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Badaev or S. S. Goncharov.

Additional information

(S. A. Badaev) Supported by the Kazakhstan Science Committee, grant No. 0726.

(S. S. Goncharov) Supported by RFBR (project No. 14-01-00376) and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-860.2014.1).

Translated from Algebra i Logika, Vol. 53, No. 5, pp. 555–569, September- October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badaev, S.A., Goncharov, S.S. Generalized Computable Universal Numberings. Algebra Logic 53, 355–364 (2014). https://doi.org/10.1007/s10469-014-9296-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-014-9296-3

Keywords

Navigation