We aim to consider the notion of a computable numbering as a uniform enumeration of sets of a family relative to an arbitrary oracle. The questions under investigation concern primarily universal computable numberings. A study of this kind of numberings is mostly motivated by their nature since any universal numbering of a family contains information on all its computable numberings.
Similar content being viewed by others
References
S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra and Logic, 36, No. 6, 359–369 (1997).
S. A.Badaev and S. S.Goncharov, “Theory of numberings: Open problems,” in Computability Theory and Its Applications, Cont. Math., 257, Am. Math. Soc., Providence, R.I. (2000), pp. 23–38.
S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Completeness and universality of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 11–44.
S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, and A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 45–77.
S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Isomorphism types and theories of Rogers semilattices of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 79–91.
S.A.Badaev andS.S.Goncharov, “Rogerssemilattices offamilies of arithmetic sets,” Algebra and Logic, 40, No. 5, 283–291 (2001).
S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Elementary theories for Rogers semilattices,” Algebra and Logic, 44, No. 3, 143–147 (2005).
S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy.” Algebra and Logic, 45, No. 6, 361–370 (2006).
S. A. Badaev and S. Yu. Podzorov, “Minimal coverings in the Rogers semilattices of Σn 0- computable numberings,” Sib. Math. J., 43, No. 4, 616–622 (2002).
S. Yu. Podzorov, “Initial segments in Rogers semilattices of Σn 0-computable numberings,” Algebra and Logic, 42, No. 2, 121–129 (2003).
S.Yu. Podzorov, “The limit property ofthe greatestelement inthe Rogerssemilattice,” Math. Trudy, 7, No. 2, 98–108 (2004).
S. Yu. Podzorov, “Local structure of Rogers semilattices of Σn 0-computable numberings,” Algebra and Logic, 44, No. 2, 82–94 (2005).
S. A. Badaev and S. S. Goncharov, “Computability and numberings,” in New Computational Paradigms, S. B.Cooper, B.Lowe, and A.Sorbi (eds.), Springer, New York (2008), pp. 19–34.
S. S. Goncharov, “Computable numberings of hyperarithmetical sets and complexity of countable models. Mathematical theory and computational practice,” 5th Conf. on Com- putability in Europe, CiE 2009, Univ. Heidelberg, Heidelberg (2009), pp. 13/14.
Yu. L. Ershov, The Theory of Numberings [in Russian], Nauka, Moscow (1977).
Yu. L. Ershov, “Theory of numberings,” in Handbook of Computability Theory, Stud. Log. Found. Math., 140, North-Holland, Amsterdam (1999), pp. 473–503.
A. I. Mal’tsev, “Sets with complete numberings,” Algebra Logika, 2, No. 2, 4–29 (1963).
A.H.Lachlan, “Standard classesofrecursively enumerable sets,” Z. Math. Log. Grund. Math. , 10, No. 1, 23–42 (1964). 19. R. F. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication,” J. Symb. Log., 23, No. 3, 309–316 (1958).
Author information
Authors and Affiliations
Corresponding authors
Additional information
(S. A. Badaev) Supported by the Kazakhstan Science Committee, grant No. 0726.
(S. S. Goncharov) Supported by RFBR (project No. 14-01-00376) and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-860.2014.1).
Translated from Algebra i Logika, Vol. 53, No. 5, pp. 555–569, September- October, 2014.
Rights and permissions
About this article
Cite this article
Badaev, S.A., Goncharov, S.S. Generalized Computable Universal Numberings. Algebra Logic 53, 355–364 (2014). https://doi.org/10.1007/s10469-014-9296-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10469-014-9296-3