Skip to main content
Log in

The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras

  • Published:
Algebra and Logic Aims and scope

Using the coordinate ring of an n-dimensional real sphere, we construct examples of differentially simple algebras which are finitely generated projective, but nonfree, modules over their centroids. As a consequence, examples of such algebras are obtained in varieties of associative, Lie, alternative, Mal’tsev, and Jordan algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zassenhaus, “Über Liesche Ringe mit Primzahlcharakteristik,” Abh. Math. Semin. Hansische Univ., 13, 1–100 (1939).

    Article  MathSciNet  Google Scholar 

  2. A. A. Albert, “On commutative power-associative algebras of degree two,” Trans. Am. Math. Soc., 74, No. 2, 323–343 (1953).

    Article  MATH  Google Scholar 

  3. E. C. Posner, “Differentiably simple rings,” Proc. Am. Math. Soc., 11, No. 3, 337–343 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Yuan, “Differentiably simple rings of prime characteristic,” Duke Math. J., 31, No. 4, 623–630 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. E. Block, “Determination of the differentiably simple rings with a minimal ideal,” Ann. Math. (2), 90, No. 3, 433–459 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. A. Popov, “Differentiably simple alternative algebras,” Algebra Logika, 49, No. 5, 670–689 (2010).

    Article  MathSciNet  Google Scholar 

  7. A. A. Popov, “Differentiably simple Jordan algebras,” to appear in Sib. Math. Zh.

  8. S-J. Cheng, “Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras,” J. Alg., 173, No. 1, 1–43 (1995).

    Article  MATH  Google Scholar 

  9. I. P. Shestakov, “Prime alternative superalgebras of arbitrary characteristic,” Algebra Logika, 36, No. 6, 675–716 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Martinez and E. Zelmanov, “Simple finite-dimensional Jordan superalgebras of prime characteristic,” J. Alg., 236, No. 2, 575–629 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. V. Polikarpov and I. P. Shestakov, “Nonassociative affine algebras,” Algebra Logika, 29, No. 6, 709–723 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gr. Voskoglou, “A note on derivations of commutative rings,” MATH’10 Proc. 15th WSEAS Int. Conf. Appl. Math., WSEAS, Stevens Point (2010), pp. 73-78.

  13. M. Gr. Voskoglou, “A note on the simplicity of skew polynomial rings of derivation type,” Acta Math. Univ. Ostrav., 12, No. 1, 61–64 (2004).

    MathSciNet  MATH  Google Scholar 

  14. R. G. Swan, “Vector bundles and projective modules,” Trans. Am. Math. Soc., 105, No. 2, 264–277 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. N. Zhelyabin, “Differential algebras and simple Jordan superalgebras,” Mat. Tr., 12, No. 2, 41–51 (2009).

    MathSciNet  MATH  Google Scholar 

  16. V. N. Zhelyabin, “Differential algebras and simple Jordan superalgebras,” Sib. Adv. Math., 20, No. 3, 223–230 (2010).

    Article  Google Scholar 

  17. V. N. Zhelyabin and I. P. Shestakov, “Simple special Jordan superalgebras with associative even part,” Sib. Mat. Zh., 45, No. 5, 1046–1072 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. P. Shestakov, “Prime superalgebras of type (1, 1),” Algebra Logika, 37, No. 6, 721–739 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Jacobson, Structure of Rings, Coll. Publ., Am. Math. Soc., 37, Am. Math. Soc., Providence, RI (1964).

  20. B. Allison, S. Berman, and A. Pianzola, “Covering algebras. II: Isomorphism of loop algebras,” J. Reine Angew. Math., 571, 39–71 (2004).

    MathSciNet  MATH  Google Scholar 

  21. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Am. Math. Soc., Providence, RI (2001).

  22. K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, Rings That Are Nearly Associative [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  23. E. N. Kuz’min, “Mal’tsev algebras and their representations,” Algebra Logika, 7, No. 4, 48–69 (1968).

    MathSciNet  MATH  Google Scholar 

  24. E. N. Kuz’min, “Structure and representations of finite-dimensional Mal’tsev algebras,” Trudy Inst. Mat. SO AN SSSR, 16, Nauka, Novosibirsk (1989), pp. 75–101.

  25. V. N. Zhelyabin, “New examples of simple Jordan superalgebras over an arbitrary field of characteristic zero,” Alg. Anal., 24, No. 4, 84–96 (2012).

    MathSciNet  Google Scholar 

  26. A. A. Suslin, “Algebraic K-theory,” in Itogi Nauki Tekhniki. Algebra, Geometry, Topology, 20, VINITI, Moscow (1982), pp. 71–152.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Zhelyabin.

Additional information

*Supported by RFBR (project No. 11-01-00938-a), by FAPESP (grant No. 2010/50347-9), and by CNPq (grant No. 305344/2009-9).

Translated from Algebra i Logika, Vol. 52, No. 4, pp. 416-434, July-August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhelyabin, V.N., Popov, A.A. & Shestakov, I.P. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra Logic 52, 277–289 (2013). https://doi.org/10.1007/s10469-013-9242-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-013-9242-9

Keywords

Navigation