Skip to main content
Log in

The computable embedding problem

  • Published:
Algebra and Logic Aims and scope

Calvert calculated the complexity of the computable isomorphism problem for a number of familiar classes of structures. Rosendal suggested that it might be interesting to do the same for the computable embedding problem. By the computable isomorphism problem and (computable embedding problem) we mean the difficulty of determining whether there exists an isomorphism (embedding) between two members of a class of computable structures. For some classes, such as the class of \( \mathbb{Q} \)-vector spaces and the class of linear orderings, it turns out that the two problems have the same complexity. Moreover, calculations are essentially the same. For other classes, there are differences. We present examples in which the embedding problem is trivial (within the class) and the computable isomorphism problem is more complicated. We also give an example in which the embedding problem is more complicated than the isomorphism problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Goncharov and J. F. Knight, “Computable structure and non-structure theorems,” Algebra Logika, 41, No. 6, 639–681 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000).

    MATH  Google Scholar 

  3. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  4. W. Calvert, “Algebraic structure and computable structure,” Ph. D. Thesis, Notre Dame Univ. (2005).

  5. W. Calvert, “The isomorphism problem for classes of computable fields,” Arch. Math. Log., 75, No. 3, 327–336 (2004).

    Article  MathSciNet  Google Scholar 

  6. W. Calvert, “The isomorphism problem for computable Abelian p-groups of bounded length,” J. Symb. Log., 70, No. 1, 331–345 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. F. Knight, S. Miller, and M. Vanden Boom, “Turing computable embeddings,” J. Symb. Log., 72, No. 3, 901–918 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Downey and A. Montalbán, “The isomorphism problem for torsion-free Abelian groups is analytic complete,” J. Alg., 320, No. 6, 2291–2300 (2008).

    Article  MATH  Google Scholar 

  9. V. Harizanov, S. Lempp, C. F. McCoy, A. S. Morozov, and D. Reed Solomon, “On the isomorphism problem for nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups,” Preprint.

  10. D. Marker, Model Theory: An Introduction, Grad. Texts Math., 217, Springer, New York (2002).

  11. W. Calvert, D. Cummins, J. F. Knight, and S. Miller, “Comparing classes of finite structures,” Algebra Logika, 43, No. 6, 666–701 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Friedman and L. Stanley, “A Borel reducibility theory for classes of computable structures,” J. Symb. Log., 54, No. 3, 894–914 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. I. Mal’tsev, “On a correspondence between rings and groups,” Mat. Sb., 50, No. 3, 257–266 (1960).

    MathSciNet  Google Scholar 

  14. D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, “Degree spectra and computable dimension in algebraic structures,” Ann. Pure Appl. Log., 115, Nos. 1–3, 71–113 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin (1977).

    MATH  Google Scholar 

  16. G. Higman, B. H. Neumann, and H. Neumann, “Embedding theorems for groups,” J. London Math. Soc., 24, 247–254 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. S. Sacerdote, “Elementary properties of free groups,” Trans. Am. Math. Soc., 178, 127–138 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Calvert, D. Cenzer, V. Harizanov, and A. Morozov, “Effective categoricity of equivalence structures,” Ann. Pure Appl. Log., 141, Nos. 1/2, 61–78 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. J. Ash and J. F. Knight, “Pairs of recursive structures,” Ann. Pure Appl. Log., 46, No. 3, 211–234 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. T. Nurtazin, “Computable classes and algebraic criteria for autostability,” Ph. D. Thesis, Institute of Mathematics and Mechanics, Alma-Ata (1974).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carson.

Additional information

Supported by NSF, binational grant DMS-0554841.

Supported by NSF, grants DMS-0139626 and DMS-0353748.

Supported by NSF, grant DMS-0704265.

Supported by the Grants Council (under RF President) for Undergraduate and Postgraduate Studies Abroad.

Translated from Algebra i Logika, Vol. 50, No. 6, pp. 707-732, November-December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carson, J., Fokina, E., Harizanov, V.S. et al. The computable embedding problem. Algebra Logic 50, 478–493 (2012). https://doi.org/10.1007/s10469-012-9160-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-012-9160-2

Keywords

Navigation